PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

The fundamental solutions to the central symmetric time-fractional heat conduction equation with heat absorption

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The time-fractional heat conduction equation with heat absorption proportional to temperature is considered in the case of central symmetry. The fundamental solutions to the Cauchy problem and to the source problem are obtained using the integral transform technique. The numerical results are presented graphically.
Rocznik
Strony
101--112
Opis fizyczny
Bibliogr. 32 poz., rys.
Twórcy
autor
  • Institute of Mathematics and Computer Science, Faculty of Mathematical and Natural Sciences, Jan Długosz University in Częstochowa Częstochowa, Poland
autor
  • Institute of Mathematics, Częstochowa University of Technology Częstochowa, Poland
Bibliografia
  • [1] Povstenko Y., Fractional heat conduction equation and associated thermal stresses, J. Thermal Stresses 2005, 28, 83-102.
  • [2] Povstenko Y., Thermoelasticity which uses fractional heat conduction equation, J. Math. Sci. 2009, 162, 296-305.
  • [3] Povstenko Y., Non-axisymmetric solutions to time-fractional diffusion-wave equation in an infinite cylinder, Fract. Calc. Appl. Anal. 2011, 14, 418-435.
  • [4] Povstenko Y., Linear Fractional Diffusion-Wave Equation for Scientists and Engineers, Birkhäuser, New York 2015.
  • [5] Gorenflo R., Mainardi F., Fractional calculus: integral and differential equations of fractional order, [In:] A. Carpinteri, F. Mainardi (eds.), Fractals and Fractional Calculus in Continuum Mechanics, Springer, Wien 1997, 223-276.
  • [6] Podlubny I., Fractional Differential Equations, Academic Press, San Diego 1999.
  • [7] Kilbas A., Srivastava H., Trujillo J., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam 2006.
  • [8] Hilfer R. (ed.), Applications of Fractional Calculus in Physics, World Scientific, Singapore 2000.
  • [9] West B.J., Bologna M., Grigolini P., Physics of Fractals Operators, Springer, New York 2003.
  • [10] Magin R.L., Fractional Calculus in Bioengineering, Begell House Publishers, Connecticut 2006.
  • [11] Mainardi F., Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, Imperial College Press, London 2010.
  • [12] Leszczyński J.S., An Introduction to Fractional Mechanics, The Publishing Office of Częstochowa University of Technology, Częstochowa 2011.
  • [13] Uchaikin V.V., Fractional Derivatives for Physicists and Engineers, Springer, Berlin 2013.
  • [14] Atanacković T.M., Pilipović S., Stanković B., Zorica D., Fractional Calculus with Applications in Mechanics, John Wiley & Sons, Hoboken 2014.
  • [15] Povstenko Y., Fractional Thermoelasticity, Springer, New York 2015.
  • [16] Crank J., The Mathematics of Diffusion, 2nd ed., Oxford University Press, Oxford 1975.
  • [17] Carslaw H.S., Jaeger J.C., Conduction of Heat in Solids, 2nd ed., Oxford University Press, Oxford 1959.
  • [18] Polyanin A.D., Handbook of Linear Partial Differential Equations for Engineers and Scientists, Chapman & Hall/CRC, Boca Raton 2002.
  • [19] Nyborg W.L., Solutions of the bio-heat transfer equation, Phys. Med. Biol. 1988, 33, 785-792.
  • [20] Abad E., Yuste S.B., Lindenberg K., Survival probability of an immobile target in a sea of evanescent diffusive or subdiffusive traps: a fractional equation approach, Phys. Rev. E 2012, 86, 061120.
  • [21] Sokolov I.M., Schmidt M.G.W., Sagués F., Reaction-subdiffusion equations, Phys. Rev. E 2006, 73, 031102.
  • [22] Henry B.I., Langlands T.A.M., Wearne S.L., Anomalous diffusion with linear reaction dynamics: from continuous time random walks to fractional reaction-diffusion equations, Phys. Rev. E 2006, 74, 031116.
  • [23] Abad E., Yuste S.B., Lindenberg K., Reaction-subdiffusion and reaction-superdiffusion equations for evanescent perticles performing continuous-time random walks, Phys. Rev. E 2010, 81, 031115.
  • [24] Méndez V., Fedotov S., Horsthemke W., Reaction-Transport Systems: Mesoscopic Foundations, Fronts, and Spatial Instabilities, Springer, Berlin 2010.
  • [25] Povstenko Y., Fundamental solutions to central symmetric problems for fractional heat conduction equation and associated thermal stresses, J. Thermal Stresses 2008, 31, 127-148.
  • [26] Sneddon I.N., The Use of Integral Transforms, McGraw-Hill, New York 1972.
  • [27] Tikhonov A.N., Samarskii A.A., Equations of Mathematical Physics, Dover, New York 1990.
  • [28] Prudnikov A.P., Brychkov Yu.A., Marichev O.I., Integrals and Series. Vol. 1: Elementary Functions, Gordon and Breach, Amsterdam 1986.
  • [29] Gorenflo R., Loutchko J., Luchko Yu., Computation of the Mittag-Leffler function and its derivatives, Fract. Calc. Appl. Anal. 2002, 5, 491-518.
  • [30] Ben-Avraham D., Havlin S., Diffusion and Reactions in Fractals and Disordered Systems, Cambridge University Press, Cambridge 2000.
  • [31] Metzler R., Klafter J., The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep. 2000, 339, 1-77.
  • [32] Metzler R., Klafter J., The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics, J. Phys. A: Math. Gen. 2004, 37, R161-R208.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-94ea1dbd-3f81-4818-a443-c1907ebb9ed1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.