Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We studied the effects of Aeroxide P25 titanium dioxide nanoparticles (TiO2 NPs) with a diameter of 21 nm on induction of DNA damage and long-term survival of three human cell lines: hepatocellular liver carcinoma HepG2, colorectal adenocarcinoma HT29 and lung carcinoma A549. The endpoints examined were DNA breakage estimated by the comet assay and oxidative base damage recognized by formamide-pyrimidine glycosylase (FPG) estimated with the FPG+ comet assay, frequencies of histone H2AX foci and micronuclei, apoptosis, cell metabolic activity measured by mitochondrial activity (MTT) assay and long-term survival measured by colony-forming ability. Each cell line had a different pattern of DNA breakage and base damage vs. nanoparticle (NP) concentration and treatment time. There was no increase in the frequencies of histone H2AX foci and micronuclei as compared to those in the untreated cells. In parallel with these results, no induction of apoptosis has been found in none of the cell lines tested. The reported experiments provided no evidence of the long-term in vitro toxicity of Aeroxide P25 TiO2 NPs, despite a slight decrease in mitochondrial activity and cell survival during the first 72 h.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
13--22
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
- Centre for Radiobiology and Biological Dosimetry Institute of Nuclear Chemistry and Technology Dorodna 16 St., 03-195 Warszawa, Poland
autor
- Centre for Radiobiology and Biological Dosimetry Institute of Nuclear Chemistry and Technology Dorodna 16 St., 03-195 Warszawa, Poland
autor
- Centre for Radiobiology and Biological Dosimetry Institute of Nuclear Chemistry and Technology Dorodna 16 St., 03-195 Warszawa, Poland
autor
- Centre for Radiobiology and Biological Dosimetry Institute of Nuclear Chemistry and Technology Dorodna 16 St., 03-195 Warszawa, Poland
autor
- Institute of Biology, Jan Kochanowski University Kielce, Poland
autor
- Institute of Nuclear Chemistry and Technology Warszawa, Poland
- Institute of Biology, Jan Kochanowski University Kielce, Poland
autor
- Centre for Radiobiology and Biological Dosimetry Institute of Nuclear Chemistry and Technology Dorodna 16 St., 03-195 Warszawa, Poland
autor
- Centre for Radiobiology and Biological Dosimetry Institute of Nuclear Chemistry and Technology Dorodna 16 St., 03-195 Warszawa, Poland
autor
- Department of Radiation Hygiene and Radiobiology National Institute of Public Health – National Institute of Hygiene, Warszawa, Poland
autor
- Centre for Radiobiology and Biological Dosimetry Institute of Nuclear Chemistry and Technology Warszawa, Poland and Department of Molecular Biology and Translational Research, Institute of Rural Health, Lublin, Poland
Bibliografia
- 1. McIntyre, R. A. (2012). Common nano-materials and their use in real world applications. Sci. Prog., 95, 1–22. https://doi.org/10.31 84/003685012X13294715456431.
- 2. Ling, C., An, H., Li, L., Wang, J., Lu, T., Wang, H., Hu, Y., Song, G., & Liu, S. (2021). Genotoxicity evaluation of titanium dioxide nanoparticles in vitro: a systematic review of the literature and meta-analysis. Biol. Trace Elem. Res., 199, 2057–2076. https://doi.org/ 10.1007/s12011-020-02311-8.
- 3. Woodruff, R. S., Li, Y., Yan, J., Bishop, M., Jones, M. Y., Watanabe, F., Biris, A. S., Rice, P., Zhou, T., & Chen, T. (2012). Genotoxicity evaluation of titanium dioxide nanoparticles using the Ames test and comet assay. J. Appl. Toxicol., 32, 934–943. https ://doi.org/10.1002/jat.2781.
- 4. Wang, S., Hunter, L. A., Arslan, Z., Wilkerson, M. G., & Wickliffe, J. K. (2011). Chronic exposure to nanosized, anatase titanium dioxide is not cyto- or genotoxic to Chinese hamster ovary cells. Environ. Mol. Mutagen., 52, 614–622. https ://doi.org/10.1002/em.20660.
- 5. Guichard, Y., Schmit, J., Darne, C., Gate, L., Goutet,M., Rousset, D., Rastoix, O., Wrobel, R., Witschger, O., Martin, A., Fierro, V., & Binet, S. (2012). Cytotoxicity and genotoxicity of nanosized and microsized titanium dioxide and iron oxide particles in Syrian hamster embryo cells. Ann. Occup. Hyg., 56, 631–644. https://do i.org/10.1093/annhyg/mes006.
- 6. Kazimirova, A., Baranokova, M., Staruchova, M., Drlickova, M., Volkovova, K., & Dusinska, M. (2019). Titanium dioxide nanoparticles tested for genotoxicity with the comet and micronucleus assays in vitro, ex vivo and in vivo. Mutat. Res., 843, 57–65. https://doi.org/10. 1016/j.mrgentox.2019.05.001.
- 7. Valdiglesias, V., Costa, C., Sharma, V., Kilic, G., Pasaro, E., Teixeira, J. P., Dhawan, A., & Laffon, B. (2013). Comparative study on effects of two different types of titanium dioxide nanoparticles on human neuronal cells. Food Chem. Toxicol., 57, 352–361.https://doi.org/10.1016/j.fct.2013.04.010.
- 8. Lankoff, A., Sandberg, W. J., Wegierek-Ciuk, A., Lisowska, H., Refsnes, M., Sartowska, B., Schwarze, P. E., Meczynska-Wielgosz, S., Wojewodzka, M., & Kruszewski, M. (2012). The effect of agglomeration state of silver and titanium dioxide nanoparticles on cellular response of HepG2, A549 and THP-1cells. Toxicol. Lett., 208, 197–213. https://doi.org/S0378-4274(11)01606-7 [pii]; DOI: 1 0.1016/j.toxlet.2011.11.006.
- 9. Wojewodzka, M., Kruszewski, M., Iwanenko, T., Collins, A. R., & Szumiel, I. (1998). Application of the comet assay for monitoring DNA damage in workers exposed to chronic low-dose irradiation. I. Strand breakag e. Mutat. Res., 416, 21–35.
- 10. Kruszewski, M., Wojewodzka, M., Iwanenko, T., Collins, A. R., & Szumiel, I. (1998). Application of the comet assay for monitoring DNA damage in workers exposed to chronic low-dose irradiation. II. Base damag e. Mutat. Res., 416, 37–57.
- 11. Kruszewski, M., Gradzka, I., Bartlomiejczyk, T., Chwastowska, J., Sommer, S., Grzelak, A., Zuberek, M., Lankoff, A., Dusinska, M., & Wojewodzka, M. (2013). Oxidative DNA damage corresponds to the long term survival of human cells treated with silver nanoparticles. Toxicol. Lett., 219, 151–159.https://doi.org/S0378-4274(13)00104-5 [pii]; DOI:1 0.1016/j.toxlet.2013.03.006.
- 12. Eckl, P. M. (1995). Aquatic genotoxicity testing with rat hepatocytes in primary culture. II. Induction of micronuclei and chromosomal aberrations. Sci. Total Environ., 159, 81–89.
- 13. Fotakis, G., & Timbrell, J. A. (2006). In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol. Lett., 160, 171–177.
- 14. Repetto, G. P. A. del, & Zurita, J. L. (2008). Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat. Protoc., 3, 1125–1131.
- 15. Reeves, J. F., Davies, S. J., Dodd, N. J., & Jha, A. N. (2008). Hydroxyl radicals (*OH) are associated with titanium dioxide (TiO(2)) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells. Mutat. Res., 640, 113–122.
- 16. Liu, S., Xu, L., Zhang, T., Ren, G., & Yang, Z. (2010). Oxidative stress and apoptosis induced by nanosized titanium dioxide in PC12 cells . Toxicology, 267, 172–177.
- 17. Shukla, R. K., Sharma, V., Pandey, A. K., Singh, S., Sultana, S., & Dhawan, A. (2011). ROS-mediated genotoxicity induced by titanium dioxide nanoparticles in human epidermal cells. Toxicol. Vitro, 25, 231–241.
- 18. Wang, J., Li, N., Zheng, L., Wang, S., Wang, Y., Zhao, X., Duan, Y., Cui, Y., Zhou, M., Cai, J., Gong, S., Wang, H., & Hong, F. (2011). P38-Nrf-2 signaling pathway of oxidative stress in mice caused by nanoparticulate TiO(2). Biol. Trace Elem. Res., 140(2), 186–197. DOI:10.1007/s12011-010-8687-0.
- 19. Trouiller, B., Reliene, R., Westbrook, A., Solaimani, P., & Schiestl, R. H. (2009). Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res., 69, 8784–8789.
- 20. Singh, N., Manshian, B., Jenkins, G. J., Griffiths, S. M., Williams, P. M., Maffeis, T. G., Wright, C. J., & Doak, S. H. (2009). NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. B iomaterials, 30, 3891–3914.
- 21. Shi, H., Magaye, R., Castranova, V., & Zhao, J. (2013). Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol., 10, 15. https://doi.org/1743-8977-10-15 [pii]; DOI: 10.1186/1743-8977-10-15.
- 22. Stepkowski, T. M., Brzoska, K., & Kruszewski, M. (2014). Silver nanoparticles induced changes in the expression of NF-kappaB related genes are cel type specific and related to the basal activity of NFkappaB. Toxicol. Vitro, 28, 473–478. https://doi.org/S0887-2333(14)00011-3 [pii]; DOI : 10.1016/j.tiv.2014.01.008.
- 23. Neijenhuis, S., Verwijs-Janssen, M., Kasten-Pisula, U., Rumping, G., Borgmann, K., Dikomey, E., Begg, A. C., & Vens, C. (2009). Mechanism of cell killing after ionizing radiation by a dominant negative DNA polymerase be ta. DNA Repair, 8, 336–346.
- 24. Ahamed, M., Karns, M., Goodson, M., Rowe, J., Hussain, S. M., Schlager, J. J., & Hong, J. (2008). DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol. Appl . Pharmacol., 233, 404–410.
- 25. Lobrich, M., Shibata, A., Beucher, A., Fisher, A., Ensminger, M., Goodarzi, A. A., Barton, O., & Jeggo, P. A. (2010). GammaH2AX foci analysis for monitoring DNA double-strand break repair: strengths, limitations and optimizati on. Cell Cycle, 9, 662–669.
- 26. Matsumoto, M., Yaginuma, K., Igarashi, A., Imura, M., Hasegawa, M., Iwabuchi, K., Date, T., Mori, T., Ishizaki, K., Yamashita, K., Inobe, M., & Matsunaga, T. (2007). Perturbed gap-filling synthesis in nucleotide excision repair causes histone H2AX phosphorylation in human quiescent cells. J. Cell. Sci., 120, 1104–1112.
- 27. Rogakou, E. P., Nieves-Neira, W., Boon, C., Pommier, Y., & Bonner, W. M. (2000). Initiation of DNA fragmentation during apoptosis induces phosphorylation of H2AX histone at serine 139. J. Biol. Chem., 275, 9390–9395.
- 28. Zuberek, M., & Grzelak, A. (2018). Nanoparticlescaused oxidative imbalance. Adv. Exp. Med. Biol., 1048, 85–98. https://doi.org/10.1007/978-3-319-72041-8_6.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-94e090f9-3865-4051-be26-2348365b6d7d