PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Estimation of the parameters affecting the water pipelines on the mining terrains with a use of an adaptive fuzzy system

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Estymacja czynników ryzyka dla sieci wodociągowej znajdującej się na terenach górniczych przy wykorzystaniu neuronowych systemów rozmytych
Języki publikacji
EN
Abstrakty
EN
The research presented in this paper is basically focused on two objectives. Firstly, the selection of parameters affecting the water supply network damage. The causes of failures were selected from a population of tens of breakdown cases and then classified in view of their importance. Secondly, attention was paid to the selection of the most suitable linguistic model which could be commonly used for selecting factors which generate failures. Finally a Mamdani-based model could be worked out as a system possessing best generalization qualities. This model can create bases for an adaptative decision system which can show the type of water supply-sewage network, depending on continuous surface strains due to the mining activity.
PL
Badania zaprezentowane w artykule miały dwa zasadnicze cele. Pierwszym z nich była selekcja czynników wpływających na awarie sieci wodociągowej zlokalizowanej na terenie górniczym. Analizując czynniki wyselekcjonowane z populacji kilkudziesięciu przypadków awarii, dokonano ich klasyfikacji pod względem istotności. Drugim celem był wybór najbardziej odpowiedniego modelu lingwistycznego, który mógłby być powszechnie stosowany dla celów selekcji czynników wywołujących awarie. Ostatecznie badania pozwoliły na wyłonienie modelu bazującego na wnioskowaniu według reguły Mamdani jako systemu cechującego się najlepszymi własnościami generalizacyjnymi. Model ten może być podstawą decyzyjnego systemu adaptacyjnego pozwalającego na wskazanie typu uszkodzeń sieci wodno-kanalizacyjnej w zależności od ciągłych deformacji powierzchni terenu wynikających z eksploatacji górniczej.
Rocznik
Strony
183--197
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
  • AGH University Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland
  • AGH University Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland
autor
  • AGH University Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
  • [1] Arangueren G., Nozal L.A.L., Basogain X., Martin J.L., Arroyabe J.L., 2002. Hardware implementation ofa pipeline fuzzy controller and software tools. Fuzzy Sets and Systems, 128, p. 61-79.
  • [2] Arroyo-Figueroa G., Sucar L.E., Villavicencio A., 2000. Fuzzy intelligent system for the operation of fossil power plants. Engineering Applications of Artifcial Intelligence, 13, p. 431-439.
  • [3] Arroyo-Figueroa G., Sucar L.E., Solis E., Villavicencio A., 1998. SADEP Ð a fuzzy diagnostic system shell Ð an application to fossil power plant operation. Expert Systems with Application,s 14 (1/2), 43-52.
  • [4] Bonvicini S., Leonelli P., Spadoni G., 1998. Risk analysis of hazardous materials transportation: evaluating uncertainty by means of fuzzy logic. Journal of Hazardous Materials, 62, p. 59-74.
  • [5] Cao Y.G., Sun X.Y., Zhang S.H., Xuea S.F., 2010. Field experiments and FEM analysis of third-party damaged oil transmission pipeline. Engineering Failure Analysis, 17, p. 344-352.
  • [6] Dong Yuhua, Yu Datao, 2005. Estimation of failure probability of oil and gas transmission pipelines by fuzzy fault tree analysis. Journal of Loss Prevention in the Process Industries, 18, p. 83-88.
  • [7] Dubois D., Prade H., 1980. Fuzzy sets and systems - Theory and applications. Academic Press.
  • [8] Esayed T., 2009. Fuzzy inference system for the risk assessment of liquefied natural gas carriers during loading/offloading at terminal. Applied Ocean Research. 31. p. 179185.
  • [9] Gao Y.P., Wang N., Zhao B., 2013. Ultimate bearing capacity of a pipeline on clayey soils: Slip-line field solution and FEM simulation. Ocean Engineering, 73, p. 159-167.
  • [10] Han Z.Y., Weng W.G., 2011. Comparison study on qualitative and quantitative risk assessment methods for urban natural gas pipeline network. Journal of Hazardous Materials, 189, p. 509-518.
  • [11] Jeng Jung-Chen, Ni-Bin Chang (2007) Mining the fuzzy control rules of aeration in a Submerged Biofilm Wastewater Treatment Process. Engineering Applications of Artificial Intelligence 20 p. 959-969.
  • [12] Klir G.J., ST. Clair U, Yuan B. (1997) Fuzzy set theory: foundations and applications. Prentice-Hall. Inc.
  • [13] Kliszczewicz B., Mendec J., Wystrychowska M., 1997. Zasady ochrony sieci wodociągowej i kanalizacyjnej przed wpływami podziemnej eksploatacji górniczej. Materiały konferencyjne: Corona powierzchni i obiektów budowlanych przed szkodami górniczymi, GIG, Katowice.
  • [14] Hao-Tien Liu, Yieh-lin Tsai, 2012. A fuzzy risk assessment approach for occupational hazards in the construction industry. Safety Science, 50, p. 1067-1078.
  • [15] Lv Yaqiong, Lee Ka Mann, Wu Zhang, 2011. Fuzzy theory applied in quality management of distributed manufacturing system. A literature review and classification Engineering Applications of Artificial Intelligence, 24, p. 266-277.
  • [16] Łęski J., 2008. Systemy neuronowo-rozmyte. WNT, Warszawa.
  • [17] Malinowska A., 2011. A fuzzy inference-based approach for building damage risk assessment on mining terrains. Engineering Structures, Vol. 33, No. 1, p. 163-170.
  • [18] Markowski A.S., Mannan M.S., 2009. Fuzzy logic for piping risk assessment (pfLOPA). Journal of Loss Prevention in the Process Industries, 22, p. 921-927.
  • [19] Olajossy A., Zajda R., 2002. Gas pipeline diameter selection method with reference to the pipe manufacturing standards. Arch. Min. Sci., Vol. 47, No 4.
  • [20] O’Rourke T.D., Torpak S., 1997. GIS assessment of water supply damage from the Northridge earthquake. Spatial Analysus in Soil Dynamics and Earthquake Engineering. ASCE, Frost D., ed.
  • [21] Osowski S., 2006. Sieci neuronowe do przetwarzania informacji. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa.
  • [22] Piegat A., 2003. Modelowanie i sterowanie rozmyte. Akademicka Oficyna Wydawnicza EXIT, Warszawa.
  • [23] Rusek J., 2009. Creating a model of technical wear of building in mining area, with utilization of regressive SVM approach. Arch. Min. Sci., Vol. 54, No 3, p. 455-466.
  • [24] Shahriar A., Sadiq R., Tesfamariam S., 2012. Risk analysis for oil & gas pipelines: A sustainability assessment approach using fuzzy based bow-tie analysis. Journal of Loss Prevention in the Process Industries, 25, p. 505-523.
  • [25] Stryczek S., Wiśniowski R., 2004. The method of gravity injection to the mining voids in salt mines. Arch. Min. Sci., Vol. 49, No 1.
  • [26] Wang G., Liu S.J., Li L., 2007. FEM modeling for 3D dynamic analysis of deep-ocean mining pipeline and its experimental verification. J. Cent. South Univ. Technol., Vol. 14, No. 12.
  • [27] Xingquan Liu, Jingjing Liu, Shanshan Guo, 2011. GIS-based Fuzzy Comprehensive Evaluation on Underground Gas Pipeline Risk. Energy Procedia, 11, p. 3911-3917.
  • [28] Zadeh L., 1965. Fuzzy sets. Information and Control, 8, p. 338-353.
  • [29] Zadeh L., 1973. Outline of a new approach to the analysis of complex systems and decision process. IEEE Transactionson Systems, Man and Cybernetics, SMC-3, p. 28-44.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-94d7f8cf-d283-43f6-b1f1-7fbeda42ac69
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.