PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

High temperature corrosion of metallic materials in coal fired power plant boilers

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this work was to perform high temperature tests in steam conditions at 700‒800°C for 3000 hours. In this work seven alloys were studied: Cr rich austenitic steels 309S, 310S, HR3C, and two solid-solution strengthened Ni based alloys; Haynes® 230®, 617 alloy and two (γ’) gamma-prime strengthened Ni based alloys; 263 and Haynes® 282®. The obtained results suggest that the exposed materials show high corrosion resistance under steam oxidation conditions where predominantly Cr2O3 and MnCr2O4 compounds developed. The materials showed no chromia evaporation process and no exfoliation of the external oxide scale. However, two (γ’) gamma-prime strengthened Ni based alloys showed a high degree of internal oxidation that increased with temperature.
Rocznik
Strony
277--291
Opis fizyczny
Bibliogr. 48 poz., rys., tab.
Twórcy
autor
  • Foundry Research Institute, ul. Zakopiańska 73, 30-418 Krakow, Poland
Bibliografia
  • 1. Rossa S. 2008. Sustainable development handbook. Lilbum: The Fairmont Press.
  • 2. Boyle G., B. Everett, J. Ramage (eds.). 2003. Energy systems and sustainability. Oxford : Oxford University Press.
  • 3. US Energy Information Administration. 2010. International energy outlook 2010. Washington DC: U.S. Department of Energy.
  • 4. Sangster A.J. 2010. Energy for a warming world. A plan to hasten the demise of fossil fuels. Springer: London.
  • 5. Kitto J. 1996. Developments in pulverized coal-fired boiler technology. Missouri Valley Electric Association Engineering Conference, 10‒12 April 1996, Kansas City, Missouri, USA.
  • 6. Nag P. 2008. Power Plant Engineering. New Delhi: Tata McGraw-Hill Publishing Company Limited.
  • 7. Miller B.G. 2005. Coal energy systems. San Diego: Elsevier Academic Press.
  • 8. Lindsley D. 2005. Power-plant control and instrumentation: The control of boilers and HRSG systems. London: The Institution of Electrical Engineers.
  • 9. Mϋller I., W. Mϋller. 2009. Fundamentals of thermodynamics and applications: With historical annotations and many citations from Avogadro to Zermelo. Berlin Heidelberg: Springer-Verlag.
  • 10. Wright I., P. Maziasz, F. Ellis, T. Gibbons, D. Woodford. 2004. Materials Issues for turbines for operation in ultrasupercritical steam. Clearwater: Proceedings of the 29th International Conference on Coal Utilization and Fuel Systems.
  • 11. Massoud M. 2005. Engineering thermofluids: Thermodynamic, fluid mechanics and heat tranfer. Berlin Heidelberg: Springer-Verlag.
  • 12. Gandy D., J. Shingledecker (eds.). 2013. Advances in Materials Technology for Fossil Power Plants: Proceedings from the Seventh International Conference (EPRI 2013). Materials Park, Ohio: ASM International.
  • 13. Bugge J., S. Kjær, R. Blum. 2006. “High-efficiency coal-fired power plants development and perspectives”. Energy 31 (10‒11) : 1437‒1445.
  • 14. Viswanathan R., J. Sarver, J.M. Tanzosh. 2006. “Boiler materials for ultra-supercritical coal power plants – Steamside oxidation”. Journal of Materials Engineering and Performance 15 (3) : 255‒274.
  • 15. Viswanathan R., R. Purgert, U. Rao. 2002. Materials technology for advance coal power plants. Ohio: EPRI Meeting.
  • 16. Cruchley S., H.E. Evans, M.P. Taylor, M.C. Hardy, S. Stekovic. 2013. “Chromia layer growth on a Ni-based superalloy: Sub-parabolic kinetics and the role of titanium”. Corrosion Science 75 : 58–66.
  • 17. Ehlers J., D.J. Young, E. Smaardijk, A. Tyagi, H. Penkalla, L. Singheiser, W.J. Quadakkers. 2006. “Enhanced oxidation of the 9%Cr steel P91 in water vapour containing environments”. Corrosion Science 48 (11) : 3428‒3454.
  • 18. Maziasz P.J., I.G. Wright, J.P. Shingeldecker, R.R. Romanosky, T.B. Gibbons, F.V. Ellis, D.A. Woodford. 2005. Defining the materials issues and research for ultra-supercritical steam turbines, 602–622. In Proceedings from the 4th International Conference, 25–28 October 2004. Materials Park, Ohio: ASM International.
  • 19. Laverde D., T. Gómez-Acebo, F. Castro. 2014. “Continuous and cyclic oxidation of T91 ferritic steel under steam”. Corrosion Science 46 (3) : 613‒631.
  • 20. Electric Power Research Institute. 2007. Program on technology innovation: Oxide growth and exfoliation on alloys exposed to steam. Palo Alto, California: EPRI Meeting.
  • 21. Wright I.G., R.B. Dooley. 2010. “A review of the oxidation behaviour of structural alloys in steam”. International Materials Reviews 55 (3) : 129–167.
  • 22. Lee N.-H., S. Kim, B.-H. Cheo, K.-B. Yoon, D. Kwon. 2009. “Failure analysis of a boiler tube in USC coal power plant”. Engineering Failure Analysis 16 (7) : 2031‒2035.
  • 23. Nishimura N., N. Komai, Y. Hirayama, F. Masuyama. 2005. “Japanese experience with steam oxidation of advanced heat-resistant steel tubes in power boilers”. Materials at High Temperatures 22 (1–2) : 3–10.
  • 24. Komai N., F. Masuyama, M. Igarashi. 2005. “10-Year experience with T23(2.25Cr-1.6W) and T122(12Cr-0.4Mo-2W) in a power boiler”. Journal of Pressure Vessel Technology 127 (2) : 190–196.
  • 25. Fry A., S. Osgerby, M. Wright. 2002. Oxidation of Alloys in Steam Environments – A Review. Teddington: National Physical Laboratory. NPL Report MATC(A)90.
  • 26. Sarver J., J. Tanzosh. 2003. Steam oxidation testing of candidate ultrasupercritical boiler materials. Clearwater: 28th International Technical Conference on Coal Utilisation and Fuel Systems.
  • 27. Saunders S., M. Monteiro, F. Rizzo. 2008. “The oxidation behaviour of metals and alloys at high temperatures in atmospheres containing water vapour: A review”. Progress in Materials Science 53 (5) : 775–837.
  • 28. Hansson A., M. Montgomery. 2006. “Steam oxidation of TP 347H FG in power plants”. Materials Science Forum 522–523 : 181‒188.
  • 29. Hansson A.N., K. Pantleon, F.B. Grumsen, M.A.J. Somers. 2010. “Microstructure evolution during steam oxidation of a Nb stabilized austenitic stainless steel”. Oxidation of Metals 73 (1‒2) : 289‒309.
  • 30. Dudziak T. EPSRC funded “SUPERGEN 2 – Conventional power plant lifetime extension”. Grant number EP/F029748/1.
  • 31. Henry S., A. Galerie, L. Antoni. 2001. “Abnormal oxidation of stabilized ferritic stainless steels in water vapour”. Materials Science Forum 369‒372 : 353–360.
  • 32. Hurst P., H.C. Cowen. 1977. The oxidation of 9 Cr-Mo and other steels in 6.9 MN/m2 steam at 748 and 823 K, paper 62. In International Conference on Ferritic Steels for Fast Reactor Steam Generators. London: British Nuclear Energy Society.
  • 33. Griess J.C., W.A. Maxwell. 1981. “The long-term oxidation of selected alloys in superheated steam at 482 and 538°C”. Oak Ridge National Laboratory, ORNL- 5771.
  • 34. Reddy R.G., X. Wen, M. Divakar. 2001. “Isothermal oxidation of TiAl alloy”. Metallurgical and Materials Transactions A 32 (9) : 2357‒2361.
  • 35. Litz J., A. Rahmel, M. Schorr, J. Weiss. 1989. “Scale formation on the Ni-base superalloys IN 939 and IN 738 LC”. Oxidation of Metals 32 (3‒4) : 167‒184.
  • 36. Gabrel J., C. Coussement, L. Verelst, R. Blum, Q. Chen, C. Testani. 2001. “Superheater materials testing for USC boilers: steam side oxidation rate of advanced materials in industrial conditions”. Materials Science Forum 369‒372 : 931–938.
  • 37. Deodeshmukh V.P. 2013. “Long-term performance of high-temperature foil alloys in water vapor containing environment. Part I: Oxidation behavior”. Oxidation of Metals 79 (5‒6) : 567‒578.
  • 38. Yin K., S. Qiu, R. Tang, Q. Zhang, L. Zhang. 2009. “Corrosion behavior of ferritic/martensitic steel P92 in supercritical water”. The Journal of Supercritical Fluids 50 : 235‒239.
  • 39. Chen Y., K. Sridharan, T. Allen. 2006. “Corrosion behavior of ferritic-martensitic steel T91 in supercritical water”. Corrosion Science 48 (9) : 2843‒2854.
  • 40. Dudziak T., V. Deodeshmukh, L. Backert, N. Sobczak, M. Witkowska, W. Ratuszek, K. Chruściel, A. Zieliński, J. Sobczak, G. Bruzda. 2017. “Phase investigations under steam oxidation process at 800°C for 1000 h of advanced steels and Ni-based alloys”. Oxidation of Metals 87 (1–2) : 139‒158.
  • 41. Bjørheim T.S., A. Kuwabara, T. Norby. 2013. “Defect chemistry of rutile TiO2 from first principles calculations”. The Journal of Physical Chemistry C 117 (11) : 5919–5930.
  • 42. Du H.L., P.K. Datta, Z. Klusek, J.S. Burnell-Gray. 2004. “Nanoscale studies of the early stages of oxidation of a TiAl-base alloy”. Oxidation of Metals (62) 3‒4 : 178‒193.
  • 43. Kekare S.A., P.B. Aswath. 1997. “Oxidation of TiAl based intermetallics”. Journal of Materials Science 32 (9) : 2485‒2499.
  • 44. Chen J.H., P.M. Rogers, J.A. Little. 1997. “Oxidation behavior of several chromia-forming commercial nickel-base superalloys”. Oxidation of Metals 47 (5‒6) : 381‒410.
  • 45. Kim D., C. Jang, W.S. Ryu. 2009. “Oxidation characteristics and oxide layer evolution of alloy 617 and Haynes 230 at 900°C and 1100°C”. Oxidation of Metals 71 (5‒6) : 271–293.
  • 46. Taylor M.P., H.E. Evans, S. Stekovic, M.C. Hardy. 2012. “The oxidation characteristics of the nickel-based superalloy, RR1000, at temperatures of 700‒900°C”. Materials at High Temperatures 29 : 145–150.
  • 47. Othman N.K., N. Othman, J. Zhang, D.J. Young. 2009. “Effects of water vapour on isothermal oxidation of chromia-forming alloys in Ar/O2 and Ar/H2 atmospheres”. Corrosion Science 51 (12) : 3039‒3049.
  • 48. Evans H.E., A.T. Donaldson, T.C. Gilmour. 1999. “Mechanisms of breakaway oxidation and application to a chromia-forming steel”. Oxidation of Metals 52 (5‒6) : 379–402.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-94d7bc2c-46c7-4f95-aa29-0558be1e0b63
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.