PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Macroscopic thermal properties of quasi-linear cellular medium on example of the liver tissue

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
There are two main topics of this research: (i) one topic considers overall properties of a nonlinear cellular composite, treated as a model of the liver tissue, and (ii) the other topic concerns the propagation of heat in the nonlinear medium described by the homogenised coefficient of thermal conductivity. For (i) we give a method and find the effective thermal conductivity for the model of the liver tissue, and for the point (ii) we present numerical and analytical treatment of the problem, and indicate the principal difference of heat propagation in linear and nonlinear media. In linear media, as it is well known, the range of the heat field is infinite for all times t > 0, and in nonlinear media it is finite. Pennes’ equation, which should characterize the heat propagation in the living tissue, is in general a quasi-nonlinear partial differential equation, and consists of three terms, one of which describes Fourier’s heat diffusion with conductivity being a function of temperature T. This term is just a point of our analysis. We show that a nonlinear character of the medium (heat conductivity dependent on the temperature) changes in qualitative manner the nature of heat transfer. It is proved that for the heat source concentrated initially (t = 0) at the space point, the range of heated region (for t > 0) is finite. The proof is analytical, and illustrated by a numerical experiment.
Rocznik
Strony
329--346
Opis fizyczny
Bibliogr. 49 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Fundamental Technological Research Polish Academy of Sciences Pawińskiego 5B, 02-106 Warszawa, Poland
autor
  • Institute of Fundamental Technological Research Polish Academy of Sciences Pawińskiego 5B, 02-106 Warszawa, Poland
autor
  • Institute of Fundamental Technological Research Polish Academy of Sciences Pawińskiego 5B, 02-106 Warszawa, Poland
autor
  • Institute of Fundamental Technological Research Polish Academy of Sciences Pawińskiego 5B, 02-106 Warszawa, Poland
Bibliografia
  • [1] Walter G. Cady. Piezoelectricity. McGraw-Hill, New York and London, 1946.
  • [2] B. Gambin, E. Kruglenko, T. Kujawska, M. Michajłow. Modeling of tissues in vivo heating induced by exposure to therapeutic ultrasound. Acta Physica Polonica A, 119(6A): 950–956, 2011.
  • [3] E. Kruglenko, B. Gambin, L. Cieślik. Soft tissue-mimicking materials with various numbers of scatterers and their acoustical characteristics. Hydroacoustics, 16: 121–128, 2013.
  • [4] L. Filipczyński, J. Etienne. Capacitance hydrophones for pressure determination in lithotripsy. Ultrasound. Med. Biol., 16(2): 157–165, 1990.
  • [5] A. Srisubat, S. Potisat, B. Lojanapiwat, V. Setthawong, M. Laopaiboon. Extracorporeal shock wave lithotripsy (ESWL) versus percutaneous nephrolithotomy (PCNL) or retrograde intrarenal surgery (RIRS) for kidney stones. The Cochrane Library, 11 CD007044 (24 November 2014).
  • [6] L.S. Beale. On some points in the anatomy of the liver of man and vertebrate animals, with directions for injecting the hepatic ducts, and making preparations. Illustrated with upwards of sixty photographs of the authors drawings, London, John Churchill, London, 1856.
  • [7] L.S. Beale. How to Work with the Microscope. 4th edition, Harrison, London, 1868.
  • [8] L.S. Beale. The liver, Illustrated with eighty-six figures, copied from nature, many of which are coloured, J.&A. Churchill, London 1889; The Journal of Physiology, Vol. 10, Iss. 5, 1 JUL 1889.
  • [9] A. Bochenek, M. Reicher. Anatomia człowieka. Tom II. Trzewa, wydanie VIII (V), Wydawnictwo Lekarskie PZWL, Warszawa, 1998.
  • [10] V. Kumar, A.K. Abbas, J.C. Aster. Robbins and Cotran pathologic basis of disease. Ninth edition, Chapter 18. Liver and gallbladder, Elsevier Saunders, Philadelphia, PA, 2015.
  • [11] Liver, from Wikipedia, the free encyclopedia, https://en.wikipedia.org/wili/Liver.
  • [12] The Hepatic Ultrastructure, http://www.otago.ac.nz/christchurch/research/liversieve/otago0120971.html.
  • [13] Hepatic Circulation: Physiology and Pathophysiology, http://www.ncbi.nlm.nih.gov/books/NBK53069/.
  • [14] R. Wojnar, B. Gambin. Thermal properties of biomaterials on the example of the liver. The 3rd Polish Congress of Mechanics, Gdańsk, September 8–11, 2015.
  • [15] B. Gambin, E. Kruglenko, R. Wojnar. Macroscopic thermal properties of quasi-linear cellular medium on example of the liver tissue, Numerical Heat Transfer 2015 – Eurotherm Seminar No 109, Institute of Thermal Technology, Silesian University of Technology, Gliwice, Institute of Heat Engineering, Warsaw University of Technology, 27– 30 September 2015, Warszawa.
  • [16] A. Gałka, J.J. Telega, S. Tokarzewski. Nonlinear transport equation and macroscopic properties of microheterogeneous media. Arch. Mech., 49(2): 293–310, 1997.
  • [17] J.J. Telega, M. Stańczyk. Modelling of soft tissues behaviour. [In:] Modelling in biomechanics, J.J. Telega [Ed.], Institute of Fundamental Technological Research Polish Academy of Sciences, pp. 191–453, Warsaw 2005.
  • [18] Ya B. Zeldovich, A.S. Kompaneets. The theory of heat propagation in the case where conductivity depends on temperature. [In:] Collection of papers celebrating the seventieth birthday of Academician A.F. Ioffe, P.I. Lukirskii [Ed.], Izdat. Akad. Nauk SSSR, Moskva, pp. 61–71, 1950, (in Russian).
  • [19] L.D. Landau, E.M. Lifshitz. Fluid Mechanics, Volume 6 of Course of Theoretical Physics, transl. from the Russian by J.B. Sykes and W.H. Reid, Second edition, Pergamon Press, Oxford – New York – Beijing – Frankfurt – Sao Paulo – Sydney – Tokyo – Toronto, 1987.
  • [20] J. Woo. A Short History of the Development of Ultrasound in Obstetrics and Gynecology. E-source Discovery Network, University of Oxford, retrieved March 12, 2012.
  • [21] L.W. Kessler. Acoustic Microscopy. Metals Handbook, Vol. 17 – Nondestructive Evaluation and Quality Control, ASM International, pp. 465–482, 1989.
  • [22] V. Jipson, C.F. Quate. Acoustic microscopy at optical wavelengths, Appl. Phys. Lett., 32(12): 789–791, 1978.
  • [23] D. Rugar. Resolution beyond the diffraction limit in the acoustic microscope: A nonlinear effect. J. Appl. Phys., 56(5): 1338–1346, 1984.
  • [24] K. Dynowski, J. Litniewski. Three-dimentional imaging in ultrasonic microscopy. Archives of Acoustics, 32(4S): 71–75, 2007.
  • [25] T. Kujawska, J. Wójcik, L. Filipczyński. Possible temperature effects computed for acoustic microscopy used for living cells. Ultrasound in Medicine and Biology, 30(1): 93–101, 2004.
  • [26] H. Carslow, J. Jaeger. Conduction of Heat in Solids, Oxford: Clarendon Press, Russian translation, Nauka, Moskva, 1964.
  • [27] H. Tautz. Warmeleitung und Temperaturausgleich, Akademie Verlag, p. 37, Berlin, 1971.
  • [28] L. Filipczyński. Estimation of heat distribution in the acoustic lens of an ultrasonic microscope with the carrier frequency of 1 GHz. Archives of Acoustics, 29(3): 427–433, 2004.
  • [29] R.S. Cotran, V. Kumar, N. Fausto, F. Nelso, S.L. Robbins, A.K. Abbas. Pathologic Basis of Disease, 7th edition, Elsevier Saunders, St. Louis, MO 2005.
  • [30] Liver Sieve Research Group Liver Structure, http://www.otago.ac.nz/christchurch/research/liversieve/otago0120971.html.
  • [31] H.F. Teutsch, D. Schuerfeld, E. Groezinger. Three-dimensional reconstruction of parenchymal units in the liver of the rat. Hepatology, 29(2): 494–505, 1999.
  • [32] B.R. Bacon, J.G. O’Grady, A.M. Di Bisceglie, J.R. Lake. Comprehensive Clinical Hepatology. Elsevier Health Sciences, Philadelphia, 2006.
  • [33] L.D. Landau, E.M. Lifshitz. Theory of Elasticity, Volume 7 of Course of Theoretical Physics, transl. by J.B. Sykes and W.H. Reid, 3rd edition, Pergamon Press, Oxford – New York – Toronto – Sydney – Paris – Braunschweig, 1975.
  • [34] http://www.itis.ethz.ch/itis-for-health/tissue-properties/database/thermal-conductivity/.
  • [35] H.H. Pennes. Analysis of tissue and arterial blood temperatures in the resting human forearm. J. Appl. Physiol., 1(2): 93–122, 1948.
  • [36] Z. Ostrowski, P. Buliński, W. Adamczyk, A.J. Nowak. Modelling and validation of transient heat transfer processes in human skin undergoing local coolong. Przegląd Elektrotechniczny, 91(5): 76–79, 2015.
  • [37] Y.S. Touloukian, P.E. Liley, S.C. Saxena. in Thermophysical Properties of Matter, The TPRC Data Series (IFI/Plenum, New York, 1970), Vol. 3, pp. 120, 209; Vol. 10, pp. 290, 589.
  • [38] J.W. Valvano, J.R. Cochran, K.R. Diller. Thermal conductivity and diffusivity of biomaterials measured with self-heated thermistors. International Journal of Thermophysics (Intern. J. Thermophysics), 6(3): 301–311, 1985.
  • [39] A. Bhattacharya, R.L. Mahajan. Temperature dependence of thermal conductivity of biological tissues. Physiological Measurement, 24(3): 769–783, 2003.
  • [40] V. Mityushev. First order approximation of effective thermal conductivity for a non-linear composite. J. Tech. Phys., 36(4): 429–432, 1995.
  • [41] E. Sanchez-Palencia. Non-Homogeneous Media and Vibration Theory. Springer Verlag, Berlin, Heidelberg, New York, 1980.
  • [42] N.S. Bakhvalov, G.P. Panasenko. Homogenisation: Averaging Processes in Periodic Media: Mathematical Problems in the Mechanics of Composite Materials. Nauka, Moscow, 1984 (in Russian); English transl. Kluwer, Dordrecht – Boston – London, 1989.
  • [43] A. Gałka, J.J. Telega, R. Wojnar. Thermodiffusion in heterogeneous elastic solids and homogenization. Arch. Mech., 46: 267–314, 1994.
  • [44] A. Gałka, J.J. Telega, R. Wojnar. Some computational aspects of homogenization of thermopiezoelectric composites. Comput. Assist. Mech. Eng. Sci., 3(2): 133–154, 1996.
  • [45] T. Kujawska, J. Wójcik, A. Nowicki. Numerical modeling of ultrasound-induced temperature fields in multilayer nonlinear attenuating media. Hydroacoustics, 12: 91–98, 2009.
  • [46] J. Wójcik. Conservation of energy and absorption in acoustic fields for linear and nonlinear propagation. The Journal of the Acoustical Society of America, 104(5): 2654–2663, 1998.
  • [47] E. Kruglenko. The influence of the physical parameters of tissue on the temperature distribution during ultrasound interaction [in Polish: Wpływ zmienności właściwości fizycznych tkanki na rozkład temperatury w tkance przy terapeutycznym oddziaływaniu ultradźwięków]. Biomedical Engineering [in Polish: Inżynieria Biomedyczna], 18(4): 250–254, 2012.
  • [48] R. Wojnar. Subdiffusion with external time modulation. Acta Physica Polonica, 114(3): 607–611, 2008.
  • [49] T. Kujawska, W. Secomski, E. Kruglenko, K. Krawczyk, A. Nowicki. Determination of tissue thermal conductivity by measuring and modeling temperature rise induced in tissue by pulsed focused ultrasound. PLOS ONE, 9(4): e94929–1–8, 2014.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-94d481cf-8d26-4885-b6f0-9832aaaed425
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.