Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents a study on the stability of a composite structure with a closed section. The research was carried out solely based on numerical simulations using the finite element method. ABAQUS software was used to conduct numerical simulations, which allowed to determine the values of critical loads, as well as the corresponding forms of buckling. As part of the research, the influence of composite material arrangement of layers on the stability of the structure was analyzed. The study was conducted on a composite material, which is a carbon-epoxy composite (CFRP). The obtained research results will be verified in subsequent studies by the results of experimental tests.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
260--265
Opis fizyczny
Bibliogr. 23 poz., fig., tab.
Twórcy
autor
- Mechanical Engineering Faculty, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
autor
- Mechanical Engineering Faculty, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
- 1. Rozylo P., Teter A., Debski H., Wysmulski P., Falkowicz K. Experimental and Numerical Study of Buckling of Composite Profiles with Open Cross Section under Axial Compression. Appl. Compos. Mater. 2017; 24: 1251–1264.
- 2. Banat D., Mania R.J. Failure assessment of thinwalled FML profiles during buckling and postbuckling response. Compos B Eng; 2017; 112: 278–289.
- 3. Rozylo P., Wrzesinska K. Numerical analysis of the behavior of compressed thin-walled elements with holes. Adv. Sci. Technol. Res. J. 2016; 10(31): 199–206.
- 4. Turvey G.J., Zhang Y. A computational and experimental analysis of the buckling, postbuckling and initial failure of pultruded GRP columns. Compos. Struct. 2006; 84: 1527–1537.
- 5. Ascione F. Influence of initial geometric imperfections in the lateral buckling problem of thin walled pultruded GFRP I-profiles. Compos. Struct. 2014; 112: 85–99.
- 6. Teter A., Kolakowski Z. Buckling of thin-walled composite structures with intermediate stiffeners. Compos. Struct. 2005; 69(4): 421–428.
- 7. Rozylo P., Debski H., Kral J. Buckling and limit states of composite profiles with top-hat channel section subjected to axial compression. AIP Conference Proceedings. 2018; 1922: 080001.
- 8. Singer J., Arbocz J., Weller T. Buckling Experiments: Experimental Methods in Buckling of Thin-Walled Structure: Basic Concepts, Columns, Beams, and Plates; John Wiley and Sons Inc.: New York, NY, USA 2000, 1.
- 9. Li Z.M., Qiao P. Buckling and post buckling behaviour of shear deformable anisotropic laminated beams with initial geometric imperfections subjected to axial compression. Eng. Struct. 2015; 85: 277–292.
- 10. Paszkiewicz M., Kubiak T. Selected problems concerning determination of the buckling load of channel section beams and columns. Thin Walled Struct. 2015; 93: 112–121.
- 11. Debski H., Rozylo P., Teter A. Buckling and limit states of thin-walled composite columns under eccentric load. Thin-Walled Struct. 2020; 149: 106627.
- 12. Rozylo P. Stability and failure of compressed thinwalled composite columns using experimental tests and advanced numerical damage models. Int J Numer Methods Eng. 2021; 122: 5076–5099.
- 13. Rozylo P. Failure analysis of thin-walled composite structures using independent advanced damage models. Compos. Struct. 2021; 262: 113598.
- 14. Kolanu N.R., Raju G., Ramji M. A unified numerical approach for the simulation of intra and inter laminar damage evolution in stiffened CFRP panels under compression. Compos. B. Eng. 2020; 190: 107931.
- 15. Li W., Cai H., Li C., Wang K., Fang L. Progressive failure of laminated composites with a hole under compressive loading based on micro-mechanics. Adv. Compos. Mater. 2014; 23: 477–490.
- 16. Ribeiro M.L., Vandepitte D., Tita V. Damage model and progressive failure analyses for filament wound composite laminates. Appl. Compos. Mater. 2013; 20: 975–992.
- 17. Rozylo P., Wysmulski P. Failure analysis of thinwalled composite profiles subjected to axial compression using progressive failure analysis (PFA) and cohesive zone model (CZM). Compos. Struct. 2021; 262: 113597.
- 18. Fascetti A., Feo L., Nistic N., Penna R. Web-flange behavior of pultruded GFRP I beams: a lattice model for the interpretation of experimental results. Compos B Eng. 2016; 100: 257–269.
- 19. Wael F. Ragheb. Local buckling analysis of pultruded FRP structural shapes subjected to eccentric compression. Thin Walled Struct. 2010; 48: 709–717.
- 20. Nunes F., Correia M., Correia J.R., Silvestre N., Moreira A. Experimental and numerical study on the structural behaviour of eccentrically loaded GFRP columns. Thin Walled Struct. 2013; 72: 175–187.
- 21. Gliszczynski A., Kubiak T. Progressive failure analysis of thin-walled composite columns subjected to uniaxial compression. Compos. Struct. 2017; 169: 52–61.
- 22. Urbaniak M., Świniarski J., Czapski P., Kubiak T. Experimental investigations of thin-walled GFRP beams subjected to pure bending. Thin-Walled Struct. 2016; 107: 397–404.
- 23. Droździel M., Podolak P., Czapski P., Zgórniak P., Jakubczak P. Failure analysis of GFRP columns subjected to axial compression manufactured under various curing-process conditions. Compos. Struct. 2021; 262: 113342.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-94d3170b-92d8-4488-9d5b-68acbdf11d91