PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Review of the Roots of Ecological Engineering and its Principles

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The wide definition of ecological engineering, a vast, multidisciplinary field, is the application and theoretical understanding of scientific and technical disciplines to protect natural habitats, as well as man-made and natural resources. The following two ideas are central themes in ecological engineering: (1) restoring substantially disturbed ecosystems as a result of anthropogenic activities and pollution, and (2) the synthesis of sustainable ecosystems that have ecological and human value by heavily relying on the self-organization capabilities of a system. Given the current paradigm of anthropogenic disturbances, the ideas and approaches of ecological engineering will be key in the creation of ecosystem resilience, eco-cities, and urban spaces. This review aims to discuss the roots of this discipline, draw comparisons to similar fields, including restoration ecology and environmental engineering, and offer a discourse of its basic principles with relevant examples from the literature. The aim is to bridge the gap between ideas such as energy signature, self-organization, and pre-adaptation to sustainable business and circular economy for a future that combines the natural environment with human society for the mutual benefit of both.
Rocznik
Strony
345--357
Opis fizyczny
Bibliogr. 71 poz., rys., tab.
Twórcy
  • Department of Biology, York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada
  • Department of Biology, York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada
Bibliografia
  • 1. Adey, W.H., Kangas, P.C., Mulbry, W. 2011. Algal Turf Scrubbing: Cleaning Surface Waters with Solar Energy While Producing a Biofuel. BioScience 61 (6): 434–41. https://doi.org/10.1525/bio.2011.61.6.5.
  • 2. Alexandri, E., Jones, P. 2008. Temperature Decreases in an Urban Canyon Due to Green Walls and Green Roofs in Diverse Climates. Building and Environment 43 [4): 480–93. https://doi.org/10.1016/j.buildenv.2006.10.055.
  • 3. Amaral, L.P., Martins, N., Gouveia, J.B. 2016. A Review of Emergy Theory, Its Application and Latest Developments. Renewable and Sustainable Energy Reviews 54 (February): 882–88. https://doi.org/10.1016/j.rser.2015.10.048.
  • 4. Asbjornsen, H., Ashton, M.S. Vogt, D.J., Palacios, S. 2004. Effects of Habitat Fragmentation on the Buffering Capacity of Edge Environments in a Seasonally Dry Tropical Oak Forest Ecosystem in Oaxaca, Mexico. Agriculture, Ecosystems & Environment 103 (3): 481–95. https://doi.org/10.1016/j.agee.2003.11.008.
  • 5. Bagreev, A., Bandosz, T.J., Locke, D.C. 2001. Pore Structure and Surface Chemistry of Adsorbents Obtained by Pyrolysis of Sewage Sludge-Derived Fertilizer. Carbon 39 (13): 1971–79. https://doi.org/10.1016/S0008-6223(01)00026-4.
  • 6. Begon, M., Townsend, C.R. 2020. Ecology: From Individuals to Ecosystems. Fifth edition. Hoboken, NJ: Wiley.
  • 7. Bergen, S.D., Bolton, S.M., Fridley, J.L. 2001. Design Principles for Ecological Engineering. Ecological Engineering 18 (2): 201–10. https://doi.org/10.1016/S0925-8574(01)00078-7.
  • 8. Biringer, J., Hansen, L.J. 2005. Restoring Forest Landscapes in the Face of Climate Change. In Forest Restoration in Landscapes, 31–37. New York: Springer-Verlag. https://doi.org/10.1007/0-387-29112-1_5.
  • 9. Bowman, W.D., Hacker, S.D. 2021. Ecology. Fifth edition. New York: Sinauer Associates ; Oxford University Press.
  • 10. Bradbury, R.H., Young, P.C. 1981. The Effects of a Major Forcing Function, Wave Energy, on a Coral Reef Ecosystem. Marine Ecology Progress Series 5: 229–41. https://doi.org/10.3354/meps005229.
  • 11. Brix, H. 1997. Do Macrophytes Play a Role in Constructed Treatment Wetlands? Water Science and Technology 35 (5). https://doi.org/10.1016/S0273-1223(97)00047-4.
  • 12. Brown, M.T, Ulgiati, S. 2004. Energy Quality, Emergy, and Transformity: H.T. Odum’s Contributions to Quantifying and Understanding Systems. Ecological Modelling 178 (1–2): 201–13. https://doi.org/10.1016/j.ecolmodel.2004.03.002.
  • 13. Chen, W., Liu, W., Geng, Y., Brown, M.T, Gao, C., Wu, R. 2017. Recent Progress on Emergy Research: A Bibliometric Analysis. Renewable and Sustainable Energy Reviews 73 (June): 1051–60. https://doi.org/10.1016/j.rser.2017.02.041.
  • 14. Chou, W., Lin, W., Lin. C. 2007. Application of Fuzzy Theory and PROMETHEE Technique to Evaluate Suitable Ecotechnology Method: A Case Study in Shihmen Reservoir Watershed, Taiwan. Ecological Engineering 31 (4): 269–80. https://doi.org/10.1016/j.ecoleng.2007.08.004.
  • 15. Correll, D.L. 1999. Phosphorus: A Rate Limiting Nutrient in Surface Waters. Poultry Science 78 (5): 674–82. https://doi.org/10.1093/ps/78.5.674.
  • 16. Deribe, E., Rosseland, B.O., Borgstrøm, R., Salbu, B., Gebremariam, Z., Dadebo, E., Skipperud, L., Eklo, O.M. 2013. Biomagnification of DDT and Its Metabolites in Four Fish Species of a Tropical Lake. Ecotoxicology and Environmental Safety 95 (September): 10–18. https://doi.org/10.1016/j.ecoenv.2013.03.020.
  • 17. Dew, N. 2007. Pre-Adaptation, Exaptation and Technology Speciation: A Comment on Cattani (2006). Industrial and Corporate Change 16 (1): 155–60. https://doi.org/10.1093/icc/dtl036.
  • 18. Disis, M.L., Slattery, J.T. 2010. The Road We Must Take: Multidisciplinary Team Science. Science Translational Medicine 2 (22). https://doi.org/10.1126/scitranslmed.3000421.
  • 19. Etnier, C., Guterstam, B. eds. 1997. Ecological Engineering for Wastewater Treatment. 2nd ed. Boca Raton: CRC Press.
  • 20. Fanchi, J.R., Fanchi, C.J. 2017. Energy in the 21st Century. 4th edition. New Jersey: World Scientific.
  • 21. Ghahremani, S., Ebadi, A., Tobeh, A., Hashemi, M., Sedghi, M., Gholipoouri, A., Barker, A.V. 2021. Short-Term Impact of Monocultured and Mixed Cover Crops on Soil Properties, Weed Suppression, and Lettuce Yield. Communications in Soil Science and Plant Analysis 52 (4): 406–15. https://doi.org/10.1080/00103624.2020.1854295.
  • 22. Gould, S.J, Vrba, E.S. 1982. Exaptation—a Missing Term in the Science of Form. Paleobiology 8 (1): 4–15. https://doi.org/10.1017/S0094837300004310.
  • 23. Hall, C.A.S. 1995. Introduction: What Is Maximum Power. In: Maximum Power. Niwot, CO: University Press of Colorado.
  • 24. Harper, D.M., Zalewski, M., Pacini, N. eds. 2008. Ecohydrology: Processes, Models and Case Studies: An Approach to the Sustainable Management of Water Resources. Wallingford, UK ; Cambridge, MA: CABI Pub.
  • 25. Hobbs, R.J., Norton, D.A. 1996. Towards a Conceptual Framework for Restoration Ecology. Restoration Ecology 4 (2): 93–110. https://doi.org/10.1111/j.1526-100X.1996.tb00112.x.
  • 26. Hutchinson, G.E. 1978. An Introduction to Population Ecology. New Haven: Yale University Press.
  • 27. Isaeva, V.V. 2012. Self-Organization in Biological Systems. Biology Bulletin 39 (2): 110–18. https://doi.org/10.1134/S1062359012020069.
  • 28. Jones, C.G. 2012. Grand Challenges for the Future of Ecological Engineering. Ecological Engineering 45 (August): 80–84. https://doi.org/10.1016/j.ecoleng.2012.02.023.
  • 29. Jørgensen, S.E., Nielsen, S.N. 2013. The Properties of the Ecological Hierarchy and Their Application as Ecological Indicators. Ecological Indicators 28 (May): 48–53. https://doi.org/10.1016/j.ecolind.2012.04.010.
  • 30. Kangas, P.C. 2004. Ecological Engineering: Principles and Practice. Boca Raton: Lewis Publishers.
  • 31. Korhonen, J., Honkasalo, A., Seppälä, J. 2018. Circular Economy: The Concept and Its Limitations. Ecological Economics 143 (January): 37–46. https://doi.org/10.1016/j.ecolecon.2017.06.041.
  • 32. Kostecka, J. 2019. Ecological Engineering – a View on Tasks and Challenges. Journal of Ecological Engineering 20 (10): 217–24. https://doi.org/10.12911/22998993/113538.
  • 33. Parrott, L. 2002. Complexity and the limits of ecological engineering. Transactions of the ASAE 45 (5). https://doi.org/10.13031/2013.11032.
  • 34. Larson, G., Stephens, P.A., Tehrani, J.J., Layton, R.H. 2013. Exapting Exaptation. Trends in Ecology & Evolution 28 (9): 497–98. https://doi.org/10.1016/j.tree.2013.05.018.
  • 35. Lofrano, G., Brown, J. 2010. Wastewater Management through the Ages: A History of Mankind. Science of The Total Environment 408 [22): 5254–64. https://doi.org/10.1016/j.scitotenv.2010.07.062.
  • 36. Mitsch, W.J. 1996. Engineering Within Ecological Constraints. Washington, D.C.: National Academies Press. https://doi.org/10.17226/4919.
  • 37. Mitsch, W.J. 1998. Ecological Engineering—the 7-Year Itch. Ecological Engineering 10 (2): 119–30. https://doi.org/10.1016/S0925-8574(98)00009-3.
  • 38. Mitsch, W.J. 2012. What Is Ecological Engineering? Ecological Engineering 45 (August): 5–12. https://doi.org/10.1016/j.ecoleng.2012.04.013.
  • 39. Mitsch, W.J., and James G. Gosselink. 2000. The Value of Wetlands: Importance of Scale and Landscape Setting. Ecological Economics 35 (1): 25–33. https://doi.org/10.1016/S0921-8009(00)00165-8.
  • 40. Mitsch, W.J., Jørgensen, S.E. 2004. Ecological Engineering and Ecosystem Restoration. Hoboken, N.J: Wiley.
  • 41. Neilson, R.P. 1993. Transient Ecotone Response to Climatic Change: Some Conceptual and Modelling Approaches. Ecological Applications 3 (3): 385–95. https://doi.org/10.2307/1941907.
  • 42. Ochoa-Hueso, R., Delgado-Baquerizo, M., Risch, A.C., Schrama, M., Morriën, E., Barmentlo, S.H., Geisen, S. 2021. Ecosystem Coupling: A Unifying Framework to Understand the Functioning and Recovery of Ecosystems. One Earth 4 (7): 951–66. https://doi.org/10.1016/j.oneear.2021.06.011.
  • 43. Odum, E.P. 1989. Ecology and Our Endangered Life-Support Systems. Sunderland, Mass: Sinauer Associates.
  • 44. Odum, E.P. 2002. Tidal Marshes as Outwelling/Pulsing Systems. In Concepts and Controversies in Tidal Marsh Ecology, edited by Michael P. Weinstein and Daniel A. Kreeger, 3–7. Dordrecht: Kluwer Academic Publishers. https://doi.org/10.1007/0-306-47534-0_1.
  • 45. Odum, H.T. 1962. Man in the Ecosystem. Proceedings of Lockwood Conference on the Suburban Forest and Ecology, Storrs, CT. Bull. Conn. Agric. Station 652: 57–75.
  • 46. Odum, H.T. 1972. Unscientific Myopia: The Illusions of Plenty., A Review of the Energy and Power Issue of Scientific American., , 246–48.
  • 47. Odum, H.T.1983. Systems Ecology: An Introduction. New York: Wiley.
  • 48. Odum, H.T. 1988. Self-Organization, Transformity, and Information. Science 242 (4882): 1132–39. https://doi.org/10.1126/science.242.4882.1132.
  • 49. Odum, H.T, Odum, B. 2003. Concepts and Methods of Ecological Engineering. Ecological Engineering 20 (5): 339–61. https://doi.org/10.1016/j.ecoleng.2003.08.008.
  • 50. Odum, W.E., Odum, E.P., Odum, H.T. 1995. Nature’s Pulsing Paradigm. Estuaries 18 (4): 547. https://doi.org/10.2307/1352375.
  • 51. Pahl-Wostl, C. 1995. The Dynamic Nature of Ecosystems: Chaos and Order Entwined. Chichester ; New York: Wiley.
  • 52. Paudel, R., Van Lent, T., Naja, G.M., Khare, Y., Wiederholt, R., Davis, S.E III. 2020. Assessing the hydrologic response of key restoration components to everglades ecosystem. Journal of Water Resources Planning and Management 146(11): 04020084. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001283.
  • 53. Pe’er, G., Van Maanen, C., Turbé, A., Matsinos, Y.G., Kark, S. 2011. Butterfly Diversity at the Ecotone between Agricultural and Semi-Natural Habitats across a Climatic Gradient: Butterfly Diversity: Local and Climatic Gradients. Diversity and Distributions 17 (6): 1186–97. https://doi.org/10.1111/j.1472-4642.2011.00795.x.
  • 54. Rabalais, N.N. 2002. Nitrogen in aquatic ecosystems. AMBIO: A Journal of the Human Environment 31(2): 102–12. https://doi.org/10.1579/0044-7447-31.2.102.
  • 55. Rapport, D.J, Regier, H.A., Hutchinson, T.C. 1985. Ecosystem Behavior Under Stress. 125 (617–640).
  • 56. Rolhauser, A.G., MacIvor, J.S., Roberto, A., Ahmed, S., Isaac, M.E. 2023. Stress‐gradient Framework for Green Roofs: Applications for Urban Agriculture and Other Ecosystem Services. Ecological Solutions and Evidence 4 [2): e12227. https://doi.org/10.1002/2688-8319.12227.
  • 57. Saha, T., Galic, M. 2018. Self-Organization across Scales: From Molecules to Organisms. Philosophical Transactions of the Royal Society B: Biological Sciences 373 (1747): 20170113. https://doi.org/10.1098/rstb.2017.0113.
  • 58. Sánchez-Carrillo, S., Angeler, D.G., Álvarez-Cobelas, M., Sánchez-Andrés, R. 2010. Freshwater Wetland Eutrophication. In Eutrophication: Causes, Consequences and Control, edited by Abid A. Ansari, Sarvajeet Singh Gill, Guy R. Lanza, and Walter Rast, 195–210. Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-90-481-9625-8_9.
  • 59. Schönborn, A., Junge, R. 2021. Redefining Ecological Engineering in the Context of Circular Economy and Sustainable Development. Circular Economy and Sustainability 1 (1): 375–94. https://doi.org/10.1007/s43615-021-00023-2.
  • 60. Shijun, M. 1985. Ecological Engineering: Applications of Ecosystem Principles. 12 (4): 331–35.
  • 61. Slagsvold, T., Wiebe, K.L. 2007. Learning the Ecological Niche. Proceedings of the Royal Society B: Biological Sciences 274 (1606): 19–23. https://doi.org/10.1098/rspb.2006.3663.
  • 62. St. Louis, V.L., Rudd, J.W.M., Kelly, C.A, Beaty, K.G., Bloom, N.S., Flett, R.J. 1994. Importance of Wetlands as Sources of Methyl Mercury to Boreal Forest Ecosystems. Canadian Journal of Fisheries and Aquatic Sciences 51 (5): 1065–76. https://doi.org/10.1139/f94-106.
  • 63. Todd, N.J, Todd, J. 1994. From Eco-Cities to Living Machines: Principles of Ecological Design. Berkeley, Calif: North Atlantic Books.
  • 64. Tzafestas, S.G. 2018. Self-Organization. In Energy, Information, Feedback, Adaptation, and Self-Organization, by Spyros G Tzafestas, 90:461–88. Intelligent Systems, Control and Automation: Science and Engineering. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-66999-1_9.
  • 65. Walters, S., Midden, K.S. 2018. Sustainability of Urban Agriculture: Vegetable Production on Green Roofs. Agriculture 8 [11): 168. https://doi.org/10.3390/agriculture8110168.
  • 66. Wang, X., Chen, T., Ge, Y., Jia., Y. 2008. Studies on Land Application of Sewage Sludge and Its Limiting Factors. Journal of Hazardous Materials 160 (2–3): 554–58. https://doi.org/10.1016/j.jhazmat.2008.03.046.
  • 67. Weiner, R.F., Robin, M. 2003. Environmental Engineering. Fourth. United States: Elsevier Science.
  • 68. Williams, G.J., Smith, J.E, Conklin, E.J., Gove, J.M., Sala, E., Sandin, S.A. 2013. Benthic communities at two remote pacific coral reefs: effects of reef habitat, depth, and wave energy gradients on spatial patterns. PeerJ 1 (May): e81. https://doi.org/10.7717/peerj.81.
  • 69. Winemiller, K.O., Montaña, C.G., Roelke, D.A, Cotner, J.B., Montoya, J.V., Sanchez, L., Castillo, M.M., Layman, C.A. 2014. Pulsing hydrology determines top-down control of basal resources in a tropical river–floodplain ecosystem. Ecological Monographs 84 (4): 621–35. https://doi.org/10.1890/13-1822.1.
  • 70. Wolanski, E., Boorman, L.A., Chacharo, L., Langlois-Saliou, E., Lara, R., Plater, A.J., Uncles, R.J., Zalewski, M. 2004. Ecohydrology as a new tool for sustainable management of estuaries and coastal waters. Wetlands Ecology and Management 12(4): 235–76. https://doi.org/10.1007/s11273-005-4752-4.
  • 71. Young, T.P. 2000. Restoration Ecology and Conservation Biology. Biological Conservation 92 (1): 73–83. https://doi.org/10.1016/S0006-3207(99)00057-9.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-94d278e8-aefa-465d-a104-dc82e721c82c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.