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In this paper the decentralized stabilization problem for pos-
itive descriptor fractional discrete-time linear systems with two 
different fractional order will be formulated and solved.

The paper is organized as follows. In Section 2 basic infor-
mation on the positive fractional discrete-time linear systems 
with different fractional orders is recalled. Descriptor frac-
tional discrete-time linear systems with different fractional or-
ders are addressed in Section 3, where the decomposition and 
positivity conditions are presented. The main idea of the paper 
is presented in Section 4, where the solution to decentralized 
stabilization of positive descriptor fractional discrete-time 
linear systems with different fractional orders is given and 
illustrated by numerical example. Concluding remarks are 
given in Section 5.

The following notation will be used: ℜ – the set of real num-
bers, ℜn×m – the set of n£m real matrices, Z+ – the set of non-
negative integers, Mn – the set of n£n Metzler matrices (with 
nonnegative off-diagonal entries), In – the n£n identity matrix.

2. Positive fractional different orders discrete-
time linear systems

Consider the fractional discrete-time linear system with two 
different fractional orders α and β of the form
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1. Introduction 

Decentralized (state-feedback) controller for linear 

time-invariant systems allows stabilization of unstable but 

controllable systems. This problem has been considered in 

many papers and books [1-5]. LTI (Linear Time-

Invariant) systems theory deal with numerous types of the 

systems e.g. positive [6-9], descriptor [5, 10-13] and/or 

fractional [4, 14-16].  

LTI systems for which inputs, state variables and 

outputs take only non-negative values are called 

(internally) positive systems. A variety of models having 

positive linear systems behavior can be found in 

engineering, management science, economics, social 

sciences, biology and medicine, etc. An overview of state 

of art in the positive systems theory is given in the 

monographs [8, 9]. 

Recently the fractional systems get more attention 

since the fractional differential equations have been used 

by engineers for modeling different processes [17, 18]. 

From mathematical point of view, the fractional calculus 

is well-known [4, 14-16, 19] however there are still aeries 

in this field which have not been comprehensively 

addressed, e.g. the descriptor systems, systems with 

delays or systems with different fractional orders (non-

commensurate) [20-22].  

A solution to the state equation of descriptor fractional 

linear systems with regular pencils has been given in [12, 

13, 23]. A comparison of three different methods for 

finding the solution of descriptor fractional discrete-time 

linear systems can be found in [24] and the solution to the 

descriptor fractional discrete-time linear systems with two 

different fractional orders has been introduced in [25]. 

Stability of positive fractional discrete-time linear systems 

have been addressed in [26-28] and the decentralized 

stabilization of fractional positive descriptor discrete-time 

linear systems in [3]. 

In this paper the decentralized stabilization problem 

for positive descriptor fractional discrete-time linear 

systems with two different fractional order will be 

formulated and solved.  

The paper is organized as follows. In section 2 basic 

information on the positive fractional discrete-time linear 

systems with different fractional orders are recalled. 

Descriptor fractional discrete-time linear systems with 

different fractional orders are addressed in section 3, 

where the decomposition and positivity conditions are 

presented. Main idea of the paper is presented in section 

4, where the solution to decentralized stabilization of 

positive descriptor fractional discrete-time linear systems 

with different fractional orders is given and illustrated by 

numerical example. Concluding remarks are given in 

section 5. 

The following notation will be used: ℜ  - the set of 

real numbers, mn×ℜ  - the set of mn ×  real matrices, +Z  - 

the set of nonnegative integers, nM  - the set of nn ×  

Metzler matrices (with nonnegative off-diagonal entries), 
 

nI
 
- the nn ×  identity matrix. 

2. Positive fractional different orders 

discrete-time linear systems 

Consider the fractional discrete-time linear system 

with two different fractional orders α and β of the form 

),()()()1(
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where +∈ Zk , 1)(1
n

kx ℜ∈  and 2)(2
n

kx ℜ∈  are the state 

vectors, 
m

ku ℜ∈)(  is the input vector and ji nn

ijA
×

ℜ∈ , 

mn
i

iB
×ℜ∈ ; i, j = 1,2, 21 nnn += . 
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 (1)

where k 2 Z+, x1(k) 2 ℜn1 and x2(k) 2 ℜn2 are the state vec-
tors, u(k) 2 ℜm is the input vector and Aij 2 ℜni×m, Bi 2 ℜni×m; 
i, j = 1, 2, n = n1 + n2.

The fractional difference of α (β) order is defined by [4]
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Using (2), we can write the equation (1) in the matrix 

form 

),(
)1(

)1(

0

0

)(

)(

)1(

)1(

2

1

2

1
1

2 ,

,

2

1

221

121

2

1

2

1 ku
B

B

jkx

jkx

Ic

Ic

kx

kx

AA

AA

kx

kx

k

j nj

nj









+







+−

+−








+

















=








+

+

∑
+

= β

α

β

α

 (3) 

where βα βα 21 222111 , nn IAAIAA +=+= , ,10, =αc   

,...2,1,)1( 1
, =








−= +

j
j

c
j

j

α
α  

Definition 1. [4] The fractional system (1) is called 

(internally) positive if 1)(1
n

kx +ℜ∈ , 2)(2
n

kx +ℜ∈  +∈ Zk  

for all 1)0(1
n

x +ℜ∈ , 2)0(2
n

x +ℜ∈  and every 
m

ku +ℜ∈)( , 

+∈ Zk . 

Theorem 1. [4] The fractional system (1) for 1,0 << βα  

is positive if and only if (iff) 
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3. Positive descriptor fractional different 

orders discrete-time linear systems 

Consider the descriptor fractional discrete-time linear 

system with two different fractional orders 
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where +∈ Zk , 1)(1
n

kx ℜ∈  and 2)(2
n

kx ℜ∈  are the state 

vectors, 
m

ku ℜ∈)(  is the input vector and ii nn
iE

×ℜ∈  

ji nn

ijA
×

ℜ∈ , 
mn

i
iB
×ℜ∈ ; i, j = 1,2. 

The state-space solution to this class of fractional systems 

can be found in [25]. 

Using the definition of fractional derivative (2), the 

fractional system (5) can be written as the descriptor 

system with delays 
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and βα βα 22221111 , EAAEAA +=+= . 

Further, we will consider the descriptor system with 

regular pencil 
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for some Cz ∈  (the field of complex numbers), where 

matrices 1E , 2E  contain only 
1
1n , 

1
2n  linearly 

independent columns, respectively. 

It is well-known [4] that every descriptor system with 

regular pencil can be decomposed e.g. by the use of the 

Weierstrass-Kronecker decomposition theorem.  

Lemma 1. If (7a) and (7b) hold for the system with two 

different fractional orders (6), then there exist nonsingular 

matrices  
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1. Introduction

Decentralized (state-feedback) controller for linear time-in-
variant systems allows stabilization of unstable but controllable 
systems. This problem has been considered in many papers and 
books [1‒5]. Linear time-invariant (LTI) system theory deals 
with numerous types of such systems e.g. positive [6‒9], de-
scriptor [5, 10‒13] and/or fractional [4, 14‒16].

LTI systems for which inputs, state variables and outputs 
take only non-negative values are called (internally) positive 
systems. A variety of models having positive linear systems 
behavior can be found in engineering, management science, 
economics, social sciences, biology and medicine, etc. An over-
view of state of art in the positive systems theory is given in 
the monographs [8, 9].

Recently the fractional systems have drawn more attention 
since the fractional differential equations were used by engi-
neers for modelling different processes [17, 18]. From the math-
ematical point of view, the fractional calculus is well-known [4, 
14‒16, 19], yet there are still areas in this field which have not 
been comprehensively addressed, e.g. the descriptor systems, 
systems with delays or systems with different fractional orders 
(non-commensurate) [20‒22].

A solution to the state equation of descriptor fractional linear 
systems with regular pencils has been given in [12, 13, 23]. 
A comparison of three different methods for finding the solu-
tion of descriptor fractional discrete-time linear systems can 
be found in [24] and the solution to the descriptor fractional 
discrete-time linear systems with two different fractional orders 
has been introduced in [25]. Stability of positive fractional dis-
crete-time linear systems have been addressed in [26‒28] and 
the decentralized stabilization of fractional positive descriptor 
discrete-time linear systems in [3].
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Using (2), we can write the equation (1) in the matrix form
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Stabilization of positive descriptor fractional discrete-time linear system with two different fractional orders by decentralized controller

The matrices P and Q, which decompose the system (6), can 
be found by the use of many different method, see e.g. [1, 29].

Premultiplying the state equation (6a) by the matrix 
P 2 ℜn×n and introducing the new state vector
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Taking into consideration (10), (11) and recombining the 
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The subsystems (13) and (14) can be written as 
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The fact, that matrices 1E , 2E  contains respectively only 
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Taking into consideration (10), (11) and recombining the 
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can be found by the use of many different method, see e.g. 
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Remark 1. For positive systems the controllability of the 

pair (A,B) is not sufficient for the stabilization of close-

loop system with Metzler matrix. The pair (A,B) should be 
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It is well-known [4] that Cj > 0 for j = 2, 3, … and 0 < α, β < 1. 
In this case, from (19) and definition of positive system we 
have x̃1(k) 2 ℜ+

ñ1, k 2 Z+ for x̃1(0) 2 ℜ+
ñ1, u(k) 2 ℜ+

m, k 2 Z+ iff 
A ̂ 11 2 ℜ+

ñ1×ñ1 and B ̂ 1 2 ℜ+
ñ1×m. Further, from (20) we have that  the 

matrices A ̂ 11 and B ̂ 1 are positive if –Ã–1
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ñ2×ñ2, Ã11 2 ℜ+
ñ1×ñ1, 

Ã12 2 ℜ+
ñ1×ñ2, Ã21 2 ℜ+
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ñ1×m, B̃2 2 ℜ+
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From (18) it follows that x̃2(k) 2 ℜ+

ñ2, k 2 Z+ iff x̃1(k) 2 ℜ+
ñ1 

and B̃2u(k) 2 ℜ+
m for k 2 Z+. □
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4. Decentralized stabilization of positive 
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For positive system (5) we are looking for a gain matrix
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Remark 1. For positive systems the controllability of the 

pair (A,B) is not sufficient for the stabilization of close-

loop system with Metzler matrix. The pair (A,B) should be 

stabilizable.  
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such that the close-loop system matrix

 Ac = A + BK 2 Mn (22)

is asymptotically stable.
We choose matrices N and G such that

 AG + BN 2 Mn and (AG + BN)G–1 < 0. (23)

Then, if (23) holds then the matrix (22) is asymptotically stable 
Metzler matrix (see. [30]).

Matrices G and N can be computed by the use of linear 
matrix inequalities method or linear programming, see e.g. [29]. 
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Remark 1. For positive systems the controllability of the 

pair (A,B) is not sufficient for the stabilization of close-

loop system with Metzler matrix. The pair (A,B) should be 

stabilizable.  

Consider the fractional system (15) with decentralized 

controller 
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The close-loop system (28) is called (internally) positive 
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Remark 1. For positive systems the controllability of the pair 
(A, B) is not sufficient for the stabilization of close-loop system 
with Metzler matrix. The pair (A, B) should be stabilizable.
Consider the fractional system (15) with decentralized controller
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11Â  and 1B̂  are positive if 22
~~1

22

~ nn
A

×
+

− ℜ∈− , 11
~~

11

~ nn
A

×
+ℜ∈ , 

21
~~

12

~ nn
A

×
+ℜ∈ , 12

~~

21

~ nn
A

×
+ℜ∈ , mn

B
×

+ℜ∈ 1
~

1

~
, mn

B
×

+ℜ∈ 2
~

2

~
. 

From (18) it follows that 2
~

2 )(~ n
kx +ℜ∈ , +∈ Zk

 
iff 

1
~

1 )(~ n
kx +ℜ∈  and mkuB +ℜ∈)(

~
2  for +∈ Zk . □ 

4. Decentralized stabilization of positive 

descriptor fractional linear systems 

For positive system (5) we are looking for a gain 

matrix 

nm
k

n

Nnkg

ggGNGK

×

−

∈ℜ=>

==

,,...,1,0

],,...,[diag, 1
1

          (21) 

such that the close-loop system matrix 

nc MBKAA ∈+=                            (22) 

is asymptotically stable.  

 

We choose matrices N and G so that 

nMBNAG ∈+  and 0)( 1 <+ −
GBNAG .      (23) 
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Remark 1. For positive systems the controllability of the 

pair (A,B) is not sufficient for the stabilization of close-

loop system with Metzler matrix. The pair (A,B) should be 

stabilizable.  

Consider the fractional system (15) with decentralized 
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11Â  and 1B̂  are positive if 22
~~1

22

~ nn
A

×
+

− ℜ∈− , 11
~~

11

~ nn
A

×
+ℜ∈ , 

21
~~

12

~ nn
A

×
+ℜ∈ , 12

~~

21

~ nn
A

×
+ℜ∈ , mn

B
×

+ℜ∈ 1
~

1

~
, mn

B
×

+ℜ∈ 2
~

2

~
. 

From (18) it follows that 2
~

2 )(~ n
kx +ℜ∈ , +∈ Zk

 
iff 

1
~

1 )(~ n
kx +ℜ∈  and mkuB +ℜ∈)(

~
2  for +∈ Zk . □ 

4. Decentralized stabilization of positive 

descriptor fractional linear systems 

For positive system (5) we are looking for a gain 

matrix 

nm
k

n

Nnkg

ggGNGK

×

−

∈ℜ=>

==

,,...,1,0

],,...,[diag, 1
1

          (21) 

such that the close-loop system matrix 

nc MBKAA ∈+=                            (22) 

is asymptotically stable.  

 

We choose matrices N and G so that 
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Then, if (23) holds then the matrix (22) is asymptotically 
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Matrices G  and N can be computed by the use of Linear 

Matrix Inequalities method or Linear Programming, see 
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state feedback if there exists a gain matrix (21) such that 
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Remark 1. For positive systems the controllability of the 

pair (A,B) is not sufficient for the stabilization of close-

loop system with Metzler matrix. The pair (A,B) should be 

stabilizable.  

Consider the fractional system (15) with decentralized 

controller 
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the pair (A,B) defined by (4)) is called stabilizable by the 

state feedback if there exists a gain matrix (21) such that 
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stable. 
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Remark 1. For positive systems the controllability of the 

pair (A,B) is not sufficient for the stabilization of close-

loop system with Metzler matrix. The pair (A,B) should be 

stabilizable.  

Consider the fractional system (15) with decentralized 

controller 
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Then, if (23) holds then the matrix (22) is asymptotically 

stable Metzler matrix (see. [30]). 

Matrices G  and N can be computed by the use of Linear 

Matrix Inequalities method or Linear Programming, see 
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state feedback if there exists a gain matrix (21) such that 
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Remark 1. For positive systems the controllability of the 

pair (A,B) is not sufficient for the stabilization of close-

loop system with Metzler matrix. The pair (A,B) should be 

stabilizable.  

Consider the fractional system (15) with decentralized 

controller 
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The close-loop system (28) is called (internally) positive 

if  
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The positive close-loop system (28) is called 
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, K̃1 2 ℜ1×ñ1, K̃2 2 ℜ1×ñ2, (27)

and the closed-loop system has the form

Iñ1 0
0 0

x̃1(k + 1)
x̃2(k + 1)

 = 
Ã11 + B̃1K̃1 Ã12

 Ã21 Ã22 + B̃2K̃2

x̃1(k)
x̃2(k)

 +

+ 

k+1

j=2
∑cj x̃1(k ¡ j + 1)

0
, k 2 Z+.

 (28)

The close-loop system (28) is called (internally) positive if

 
 x̃i(k) 2 ℜ+

ñi, i = 1, 2; k 2 Z+

for x̃i(0) 2 ℜ+
ñi, i = 1, 2.

 (29)

The positive close-loop system (28) is called asymptotically 
stable if

 
 lim

k!1
x̃i(k) = 0 

for all x̃i(0) 2 ℜ+
ni, i = 1, 2.

 (30)

Now, we have to find K̃1 and K̃2, which stabilize the descriptor 
system and do not violate its positivity.

From (28) we have

 
 x̃2(k) = –A ̂ –1

22Ã21x̃1(k) 2 ℜ+
ñ2

for –A ̂ –1
22Ã21 2 ℜ+

ñ2×ñ2,
 (31)

where A ̂ 22 = Ã22 + B̃2K̃2.
Taking under consideration (21–23), we compute (using e.g. 

LMI) K̃2 so that A ̂ 22 2 Mñ2 is asymptotically stable and –A ̂ –1
22Ã21 

is contracting matrix.
Substituting (31) into (28) we obtain
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K , which stabilize the 

descriptor system and do not violate its positivity. 

From (28) we have 

2
~

121
1

222 )(~~ˆ)(~ n
kxAAkx +

− ℜ∈−=  for 22
~~

21
1

22

~ˆ nn
AA

×
+

− ℜ∈− , (31) 

where 222222

~~~ˆ KBAA += .  

Taking under consideration (21)-(23), we compute (using 

e.g. LMI) 2

~
K  so that 

2
~22

ˆ
nMA ∈  is asymptotically stable 

and 21
1

22

~ˆ AA−−  is contracting matrix. 

Substituting (31) into (28) we obtain 

∑
+

=

+−++=+
1

2

1111111 )1(~)(~)
~~ˆ()1(~

k

j

j jkxckxKBAkx ,   (32) 

where 

11
~~

21
1

22121111

~ˆ~~ˆ nn
AAAAA

×
+

− ℜ∈−=  for 11
~~

11

~ nn
A

×
+ℜ∈ .  (33) 

It is well-known [13] that 0
0

=∑
∞

=j

jc  and 









−

−
=∑

∞

=
β

α

10

01

2j

jc . In this case we compute the matrix 

1

~
K  so that the matrix 

11

2

1
~~

11
~

~

11

~~

)1(0

0)1(
ˆ nn

n

n
KB

I

I
A

×
+ℜ∈+








−

−
+

β

α
  (34) 

is asymptotically stable. 

If the condition (34) is satisfied then from (32) it follows 

that 1
~

1 )(~ n
kx +ℜ∈ , +∈Zk  and 

0)(~lim 1 =
∞→

kx
k

.                             (35) 

This imply 2
~

2 )(~ n
kx +ℜ∈ , +∈Zk  and  

0)(~lim 2 =
∞→

kx
k

.                            (36) 

Therefore, it was proven that: 

Theorem 3. The positive descriptor fractional discrete-

time linear system with two different fractional orders (6) 

can be stabilized by the decentralized controller (27) iff 

the pairs )
~

,ˆ(),
~

,
~

( 111222 BABA  are stabilizable and 

21
1

22

~ˆ AA−−  is the contracting matrix. 

Example 1. Find the solution of the descriptor fractional 

linear system (6) with the fractional orders 5.0=α , 

6.0=β  and the matrices 
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05.0

,

000

001

010

,

000

010

001

21

21
















=

















−

=
















=
















=

BB

EE

            (37) 
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1211
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−

−
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It is easy to check that the matrices (37) satisfies the 

assumptions (7a), (7b). In this case the matrices P and Q 

have the form 
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21
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PP

            (38) 

and the decomposition (10) is given by 
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14.005.013.0

07.002.006.0

,

85.01.035.0

25.022.007.0

15.046.008.0

,
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01.02.0

1.01.005.0

,

05.005.00

001.0

006.00

,

05.0

05.0

0

,

05.0

0

0

,
00

0
,

00

0

221

121

21
2

2
2

1
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β
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I

E
I

E

                         

(39) 

Using (16) we have 

, (32)

where

 

5 

Now, we have to find 1

~
K  and 2

~
K , which stabilize the 

descriptor system and do not violate its positivity. 

From (28) we have 

2
~

121
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kxAAkx +

− ℜ∈−=  for 22
~~

21
1
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~ˆ nn
AA

×
+

− ℜ∈− , (31) 

where 222222

~~~ˆ KBAA += .  

Taking under consideration (21)-(23), we compute (using 

e.g. LMI) 2

~
K  so that 

2
~22

ˆ
nMA ∈  is asymptotically stable 

and 21
1

22

~ˆ AA−−  is contracting matrix. 

Substituting (31) into (28) we obtain 

∑
+
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1

2

1111111 )1(~)(~)
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k

j

j jkxckxKBAkx ,   (32) 

where 
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~ nn
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×
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It is well-known [13] that 0
0
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∞

=j

jc  and 
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jc . In this case we compute the matrix 
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K  so that the matrix 
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−
+

β

α
  (34) 

is asymptotically stable. 

If the condition (34) is satisfied then from (32) it follows 

that 1
~

1 )(~ n
kx +ℜ∈ , +∈Zk  and 

0)(~lim 1 =
∞→

kx
k

.                             (35) 

This imply 2
~

2 )(~ n
kx +ℜ∈ , +∈Zk  and  

0)(~lim 2 =
∞→

kx
k

.                            (36) 

Therefore, it was proven that: 

Theorem 3. The positive descriptor fractional discrete-

time linear system with two different fractional orders (6) 

can be stabilized by the decentralized controller (27) iff 

the pairs )
~

,ˆ(),
~

,
~

( 111222 BABA  are stabilizable and 

21
1

22

~ˆ AA−−  is the contracting matrix. 

Example 1. Find the solution of the descriptor fractional 

linear system (6) with the fractional orders 5.0=α , 

6.0=β  and the matrices 
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It is easy to check that the matrices (37) satisfies the 

assumptions (7a), (7b). In this case the matrices P and Q 

have the form 
















=
















=
















=

















−

=

100

010

001

,

100

001

010

,

100

001

010

,

100

101

010

21

21

QQ

PP

            (38) 

and the decomposition (10) is given by 
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,
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,
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(39) 

Using (16) we have 

. (33)

It is well-known [13] that 
1

j=2
∑cj = 0 and 

1

j=2
∑cj = 

∙
1 ¡ α	 0
 0 1 ¡ β

¸
. 

In this case we compute the matrix K̃1 so that the matrix

 

5 

Now, we have to find 1

~
K  and 2

~
K , which stabilize the 

descriptor system and do not violate its positivity. 

From (28) we have 

2
~

121
1

222 )(~~ˆ)(~ n
kxAAkx +

− ℜ∈−=  for 22
~~

21
1

22

~ˆ nn
AA

×
+

− ℜ∈− , (31) 

where 222222

~~~ˆ KBAA += .  

Taking under consideration (21)-(23), we compute (using 

e.g. LMI) 2

~
K  so that 

2
~22

ˆ
nMA ∈  is asymptotically stable 

and 21
1

22

~ˆ AA−−  is contracting matrix. 

Substituting (31) into (28) we obtain 

∑
+

=

+−++=+
1

2

1111111 )1(~)(~)
~~ˆ()1(~

k

j

j jkxckxKBAkx ,   (32) 

where 

11
~~

21
1

22121111

~ˆ~~ˆ nn
AAAAA

×
+

− ℜ∈−=  for 11
~~

11

~ nn
A

×
+ℜ∈ .  (33) 

It is well-known [13] that 0
0

=∑
∞

=j

jc  and 









−

−
=∑

∞

=
β

α

10

01

2j

jc . In this case we compute the matrix 

1

~
K  so that the matrix 

11

2

1
~~

11
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~

11

~~

)1(0

0)1(
ˆ nn

n

n
KB

I

I
A

×
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−

−
+

β

α
  (34) 

is asymptotically stable. 

If the condition (34) is satisfied then from (32) it follows 

that 1
~

1 )(~ n
kx +ℜ∈ , +∈Zk  and 

0)(~lim 1 =
∞→

kx
k

.                             (35) 

This imply 2
~

2 )(~ n
kx +ℜ∈ , +∈Zk  and  

0)(~lim 2 =
∞→

kx
k

.                            (36) 

Therefore, it was proven that: 

Theorem 3. The positive descriptor fractional discrete-

time linear system with two different fractional orders (6) 

can be stabilized by the decentralized controller (27) iff 

the pairs )
~

,ˆ(),
~

,
~

( 111222 BABA  are stabilizable and 

21
1

22

~ˆ AA−−  is the contracting matrix. 

Example 1. Find the solution of the descriptor fractional 

linear system (6) with the fractional orders 5.0=α , 

6.0=β  and the matrices 
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,
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It is easy to check that the matrices (37) satisfies the 

assumptions (7a), (7b). In this case the matrices P and Q 

have the form 
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,
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,
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,
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010

21

21

QQ

PP

            (38) 

and the decomposition (10) is given by 

.

11.023.011.0

14.005.013.0

07.002.006.0

,

85.01.035.0

25.022.007.0

15.046.008.0

,

4.000

01.02.0

1.01.005.0

,

05.005.00

001.0

006.00

,
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05.0

0

,

05.0
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0
,
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E
I
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(39) 

Using (16) we have 

 (34)

is asymptotically stable.
If the condition (34) is satisfied then from (32) it follows 

that x̃1(k) 2 ℜ+
ñ1, k 2 Z+ and

 lim
k!1

x̃1(k) = 0, (35)

This imply x̃2(k) 2 ℜ+
ñ2, k 2 Z+ and

 lim
k!1

x̃2(k) = 0. (36)

Therefore, it was proven that:
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Theorem 3. The positive descriptor fractional discrete-time 
linear system with two different fractional orders (6) can be 
stabilized by the decentralized controller (27) iff the pairs 
(Ã22, B̃2), (A ̂ 11, B̃1) are stabilizable and –A ̂ –1

22Ã21 is the con-
tracting matrix.

Example 1. Find the solution of the descriptor fractional linear 
system (6) with the fractional orders α = 0.5, β = 0.6 and the 
matrices

 E1 = 
1  0  0
0  1  0
0  0  0

, E2 = 
0  1  0
1  0  0
0  0  0

,

 B1 = 
–0.05
–0
–0.05

, B2 = 
0.05
0
0.05

,

 A11 = 
–0.45  –0.1  –0.05
–0.06  –0.5  –0
–0.05  –0.5  –0.05

, A12 = 
0.25  0.1  –0.4
0.05  0.1  –0
0.05  0.5  –0.4

,

A21 = 
0.22  0.07  0.25
0.46  0.08  0.15
0.15  0.35  0.85

, A22 = 
–0.13  –0.55  0.14
–0.54  –0.02  0.07
–0.11  –0.23  0.11

.

 (37)

It is easy to check that the matrices (37) satisfies the assump-
tions (7a, 7b). In this case the matrices P and Q have the form

 

 P1 = 
0  1  –0
1  0  –1
0  0  –1

, P2 = 
0  1  0
1  0  0
0  0  1

,

 Q1 = 
0  1  0
1  0  0
0  0  1

, Q2 = 
1  0  0
0  1  0
0  0  1

,

 (38)

and the decomposition (10) is given by

E–1 = 
I2 0
0 0

,  E–2 = 
I2 0
0 0

,  B–1 = 
0
0

0.05
,  B–2 = 

0
0.05
0.05

,

A–1α = 
0.1  0.06  0
0.1  0.05  0
0.1  0.05  0.05

,    A–12 = 
0.05  0.1  0.1
0.25  0.1  0
0.05  0.1  0.4

,

A–21 = 
0.08  0.46  0.15
0.07  0.22  0.25
0.35  0.12  0.85

, A–2β = 
0.06  0.02  0.07
0.13  0.05  0.14
0.11  0.23  0.11

.

 (39)

Using (16) we have

Ã11 = 

0.08  0.06  0.05  0.1
0.18  0.06  0.26  0.1
0.08  0.46  0.06  0.02
0.08  0.22  0.13  0.05

,  Ã12 = 

0.08  0.1
0.18  0.06
0.15  0.07
0.25  0.14

,

Ã21 = 
0.08  0.05  0.08  0
0.35  0.12  0.11  0.23

, Ã22 = 
0.05  0.4
0.85  0.11

,

B̃1 = 

0
0
0
0.05

, B̃2 = 
0.05
0.05

.

 (40)

Now, taking under consideration (21‒23) we obtain

 A ̂ 22 = Ã22 + B̃2K̃2 = (Ã22G̃2 + B̃2Ñ2)G̃2
–1 2 M2. (41)

We assume, that our desired matrix should have the form

 A ̂ 22 = 
–0.75  –0.05
–0.05  –0.24

 2 M2. (42)

since it is asymptotically stable Meltzer matrix and 

 –A ̂ –1
22Ã21 = 

0.15  0.15  0.03  0.06
1.48  0.44  0.46  0.97

 (43)

is contracting matrix, e.g. by Definition 3 for vector x̃1 = [1 1 1 1]T  
we have kx̃1k = 4, kx̃2k = 3.64.

Lets take G̃2 = diag[1, 1]. Using one of the well-known 
methods (in this case Symbolic Math Toolbox), we compute

 K̃2 = Ñ2G̃2
–1 = [–16  –7] (44)

which satisfy (41).
Unlike the matrix (41) which should be Metzler, the matrix 

(34) need to be positive. In this case, using similar approach, 
we compute K̃1 = [–4  –4  –2  –5] for which

 

A ̂ 11 + 
Iñ1

(1 ¡ α) 0
 0 Iñ2

(1 ¡ β)
 + B̃1K̃1 = 

A ̂ 11 = 

0.65  0.1  0.1  0.2
0.15  0.5  0.2  0.1
0.25  0.5  0.5  0.1
0.15  0.1  0.1  0.35

.

 (45)

is positive and asymptotically stable matrix, since its eigen-
values are λ = [0.99 0.54 0.19 0.28].
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Inversing recombination and decomposition on the matrix 
K̃ = blockdiag(K̃1, K̃2) we can find the gain matrix of decen-
tralized controller for descriptor fractional discrete-time linear 
system with two different fractional orders (5) described by 
matrices (37) of the form

 K = 
–4 –4 –16 –0 –0 –0
–0 –0 –10 –5 –2 –7

. (46)

5. Concluding remarks

The positive fractional discrete-time linear systems with two 
different fractional orders were analyzed. Based on the decom-
position of the regular pencil, necessary and sufficient condi-
tions for the positivity were extended to the descriptor frac-
tional discrete-time linear system with two different fractional 
orders. A method for finding the decentralized controller for 
the class of positive systems was proposed and its effectiveness 
demonstrated on a numerical example. An extension of these 
considerations to the systems consisting of n subsystems with 
different fractional orders is possible.
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