Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Internet of Things (IoT) will play an important role in modern communication systems. Thousands of devices will talk to each other at the same time. Clearly, smart and efficient hardware will play a vital role in the development of IoT. In this context, the importance of antennas increases due to them being essential parts of communication networks. For IoT applications, a small size with good matching and over a wide frequency range is preferred to ensure reduced size of communication devices. In this paper, we propose a structure and discuss design optimization of a wideband antenna for IoT applications. The antenna consists of a stepped-impedance feed line, a rectangular radiator and a ground plane. The objective is to minimize the antenna footprint by simultaneously adjusting all geometry parameters and to maintain the electrical characteristic of antenna at an acceptable level. The obtained design exhibits dimensions of only 3.7 mm × 11.8 mm and a footprint of 44 mm2, an omnidirectional radiation pattern, and an excellent pattern stability. The proposed antenna can be easily handled within compact communication devices. The simulation results are validated through measurements of the fabricated antenna prototype.
Czasopismo
Rocznik
Tom
Strony
463--471
Opis fizyczny
Bibliogr. 18 poz., rys., tab., wykr.
Twórcy
autor
- Reykjavik University, School of Science and Engineering, 101 Reykjavik, Iceland
autor
- Reykjavik University, School of Science and Engineering, 101 Reykjavik, Iceland
Bibliografia
- [1] Grau, A. (2016). How to Build a Safer Internet of Things: Todays IoT is full of security flaws. We must do better. IEEE Spectrum, http://spectrum.ieee.org/telecom/security/how-tobuild-a-safer-internet-of-things.
- [2] Kamilaris, A., Pitsillides, A. (2016). Mobile Phone Computing and the Internet of Things: A Survey. IEEE Internet of Things Journal, 885-898.
- [3] Jin, J., Gubbi, J., Marusic, S., Palaniswami, M. (2014). An Information framework for creating smart city through internet of things. IEEE Internet of Things Journal, 112-121.
- [4] Moscato, S., Silvestri, L., Delmonte, N., Pasian, M., Bozzi, M., Perregrini, L. (2016). SIW components for the Internet of Things: Novel topologies, materials, and manufacturing techniques. IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNet), 78-80.
- [5] Lizzi, L., Ferrero, F., Monin, P., Danchesi, C., Boudaud, S. (2016). Design of miniature antennas for IoT applications. IEEE International Conference on Communications and Electronics, 234-237.
- [6] Katoch, S., Jotwani, H., Pani, S., Rajawat, A. (2015). A compact dual band antenna for IOT applications. International Conference on Green Computing and Internet of Things, 1594-1597.
- [7] Mansour, A.M., Mokhtar, B., Gomah, K., Marghany, K., Abdelmonsef, A. Rizk, M.R.M., Shehata, N. (2016). Compact reconfigurable multi-size pixel antenna for cognitive radio networks and IoT environments. Loughborough Antennas & Propagation Conference, 1-5.
- [8] Zanella, A., Bui, N., Castellani, A., Vangelista, L., Zorzi, M. (2014). Internet of things for smart cities. IEEE Internet of Things Journal, 22-32.
- [9] Khan, M.A., ul Haq, M.A., ur Rehman, S. (2016). A practical miniature antenna design for future internet of things enabled smart devices. Int. Conf. Signal Processing and Communication Systems.
- [10] Bekasiewicz, A., Koziel, S. (2016). Compact UWB monopole antenna for internet of things applications. Electr. Lett., 52, 492-494.
- [11] Livingston, V., Pearson, C., Svensson, A., Arefi, R. (2015). 4G Americas’ vision for the americas: 5G spectrum recommendations. http://http://www.4gamericas.org/files/1914/4122/0345/5G_Spectrum_Recommendations_Webinar_9.2.2015.pdf.
- [12] Lemey, S., Caytan, O., Vande Ginste, D., Demeester, P., Rogier, H., Bozzi, M. (2016). SIW cavity-backed slot (multi-)antenna systems for the next generation IoT applications. IEEE Topical Conference on Wireless Sensors and Sensor Networks, 75-77.
- [13] Palattella, M.R., Dohler, M., Grieco, A., Rizzo, G., Torsner, J., Engel, T., Ladid, L. (2016). Internet of things in the 5G Era: enablers, architecture, and business models. IEEE J. Selected Areas in Communications, 510-527.
- [14] CST Microwave Studio, ver. 2015. CST AG, Bad Nauheimer Str. 19, D-64289 Darmstadt, Germany, 2015.
- [15] Bekasiewicz, A., Koziel, S. (2015). Structure and computationally-efficient simulation-driven design of compact UWB monopole antenna. IEEE Ant. Wireless Prop. Lett., 14, 1282-1285.
- [16] Conn, A.R., Gould, N.I.M., Toint, P.L. (2000). Trust Region Methods. MPS-SIAM Series on Optimization.
- [17] Dissanayake, T., Esselle, K.P. (2006). Correlation-based pattern stability analysis and a figure of merit for UWB antennas. IEEE Trans. Ant. Prop., 54(11), 3184-3191.
- [18] Liu, J., Esselle, K.P., Hay, S.G., Zhong, S. (2014). Effects of printed UWB antenna miniaturization on pulse fidelity and pattern stability. IEEE Trans. Ant. Prop., 62(8), 3903-3910.
Uwagi
EN
The authors thank Computer Simulation Technology AG, Darmstad Germany for making CST Microwave Studio available. This work is partly supported by the Icelandic Centre for Research (RANNIS) Grant 163299051.
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-94cf059f-52fa-4104-ba6e-aaead9395fa1