PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Random forest based power sustainability and cost optimization in smart grid

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Presently power control and management play a vigorous role in information technology and power management. Instead of non-renewable power manufacturing, renewable power manufacturing is preferred by every organization for controlling resource consumption, price reduction and efficient power management. Smart grid efficiently satisfies these requirements with the integration of machine learning algorithms. Machine learning algorithms are used in a smart grid for power requirement prediction, power distribution, failure identification etc. The proposed Random Forest-based smart grid system classifies the power grid into different zones like high and low power utilization. The power zones are divided into number of sub-zones and map to random forest branches. The sub-zone and branch mapping process used to identify the quantity of power utilized and the non-utilized in a zone. The non-utilized power quantity and location of power availabilities are identified and distributed the required quantity of power to the requester in a minimal response time and price. The priority power scheduling algorithm collect request from consumer and send the request to producer based on priority. The producer analysed the requester existing power utilization quantity and availability of power for scheduling the power distribution to the requester based on priority. The proposed Random Forest based sustainability and price optimization technique in smart grid experimental results are compared to existing machine learning techniques like SVM, KNN and NB. The proposed random forest-based identification technique identifies the exact location of the power availability, which takes minimal processing time and quick responses to the requestor. Additionally, the smart meter based smart grid technique identifies the faults in short time duration than the conventional energy management technique is also proven in the experimental results.
Rocznik
Strony
82--92
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
  • Faculty of Electrical and Electronics Engineering, GMR Institute of Technology, Rajam, India
  • Faculty of Applied Sciences, WSB University, Dąbrowa Górnicza, Zygmunta Cieplaka 1c, 41-300 Dąbrowa Górnicza, Poland
autor
  • Faculty of Electrical and Electronics Engineering, Kongu Engineering College, Erode, India
  • Faculty of English, Kalasalingam Academy of Research and Education, Krishnankoil 626128, India
  • Road and Bridge Research Institute, ul. Instytutowa 1, 03-302 Warszawa, Poland
Bibliografia
  • 1. Ahmad, T., Chen, H., 2018. Potential of three variant machine-learning models for forecasting district level medium-term and long-term energy demand in smart grid environment. Energy, 160. DOI: 10.1016/j.energy.2018.07.08410.1016/j.energy.2018.07.084
  • 2. Ali, S., Wu, K., Weston, K., Marinakis, D., 2016. A Machine Learning Approach to Meter Placement for Power Quality Estimation in Smart Grid. IEEE Transactions on Smart Grid, 7(3). DOI: 10.1109/TSG.2015.244283710.1109/TSG.2015.2442837
  • 3. Awan, N., Khan, S., Rahmani, M.K.I., Tahir, M., Alam, N.M.D., Alturki, R., Ullah, I., 2021. Machine Learning-Enabled Power Scheduling in IoT-Based Smart Cities. Computers, Materials and Continua, 67(2). DOI: 10.32604/cmc.2021.01438610.32604/cmc.2021.014386
  • 4. Azad, S., Sabrina, F., Wasimi, S., 2019. Transformation of smart grid using machine learning. 2019 29th Australasian Universities Power Engineering Conference, AUPEC 2019. DOI: 10.1109/AUPEC48547.2019.21180910.1109/AUPEC48547.2019.211809
  • 5. Danalakshmi, D., Prathiba, S., Ettappan, M., Krishna, D.M., 2021. Reparation of voltage disturbance using PR controller-based DVR in Modern power systems. Production Engineering Archives, 27(1). DOI: 10.30657/pea.2021.27.310.30657/pea.2021.27.3
  • 6. De Santis, E., Rizzi, A., Sadeghian, A., 2018. A cluster-based dissimilarity learning approach for localized fault classification in Smart Grids. Swarm and Evolutionary Computation, 39. DOI: 10.1016/j.swevo.2017.10.00710.1016/j.swevo.2017.10.007
  • 7. Deja, A., Kaup, M., Strulak-Wójcikiewicz, R., 2019. The concept of transport organization model in container logistics chains using inland waterway transport, Smart Innovation, Systems and Technologies, 2019, 155, 521-531.10.1007/978-981-13-9271-9_43
  • 8. Dharmadhikari, S.C., Gampala, V., Rao, C.M., Khasim, S., Jain, S., Bhaskaran, R., 2021. A smart grid incorporated with ML and IoT for a secure management system. Microprocessors and Microsystems, 83. DOI: 10.1016/j.micpro.2021.10395410.1016/j.micpro.2021.103954
  • 9. Haseeb, M., Kot, S., Iqbal Hussain, H., Kamarudin, F., 2021. The natural resources curse-economic growth hypotheses: Quantile–on–Quantile evidence from top Asian economies. Journal of Cleaner Production, 279. DOI: 10.1016/j.jclepro.2020.12359610.1016/j.jclepro.2020.123596
  • 10. Jamil, F., Iqbal, N., Imran, Ahmad, S., Kim, D., 2021. Peer-to-Peer Energy Trading Mechanism Based on Blockchain and Machine Learning for Sustainable Electrical Power Supply in Smart Grid. IEEE Access, 9. DOI: 10.1109/ACCESS.2021.306045710.1109/ACCESS.2021.3060457
  • 11. Li, D., Jayaweera, S.K., 2015. Machine-Learning Aided Optimal Customer Decisions for an Interactive Smart Grid. IEEE Systems Journal, 9(4). DOI: 10.1109/JSYST.2014.233463710.1109/JSYST.2014.2334637
  • 12. Mikita, M., Kolcun, M., Špes, M., Vojtek, M., Ivančák, M., 2017. Impact of electrical power load time management at sizing and cost of hybrid renewable power system. Polish Journal of Management Studies, 15(1). DOI: 10.17512/pjms.2017.15.1.1510.17512/pjms.2017.15.1.15
  • 13. Mohamed, M.A., Eltamaly, A.M., Farh, H.M., Alolah, A.I., 2015. Energy management and renewable energy integration in smart grid system. International Conference on Smart Energy Grid Engineering, SEGE 2015. DOI: 10.1109/SEGE.2015.732462110.1109/SEGE.2015.7324621
  • 14. Mukherjee, A., Mukherjee, P., Dey, N., De, D., Panigrahi, B.K., 2020. Lightweight sustainable intelligent load forecasting platform for smart grid applications. Sustainable Computing: Informatics and Systems, 25. DOI: 10.1016/j.suscom.2019.10035610.1016/j.suscom.2019.100356
  • 15. Muralitharan, K., Sakthivel, R., Vishnuvarthan, R., 2018. Neural network based optimization approach for energy demand prediction in smart grid. Neurocomputing, 273. DOI: 10.1016/j.neucom.2017.08.01710.1016/j.neucom.2017.08.017
  • 16. Nawaz, R., Akhtar, R., Shahid, M.A., Qureshi, I.M., Mahmood, M.H., 2021. Machine learning based false data injection in smart grid. International Journal of Electrical Power and Energy Systems, 130. DOI: 10.1016/j.ijepes.2021.10681910.1016/j.ijepes.2021.106819
  • 17. Omitaomu, O.A., Niu, H., 2021. Artificial Intelligence Techniques in Smart Grid: A Survey. Smart Cities, 4(2). DOI: 10.3390/smartcities402002910.3390/smartcities4020029
  • 18. Pallonetto, F., De Rosa, M., Milano, F., Finn, D.P., 2019. Demand response algorithms for smart-grid ready residential buildings using machine learning models. Applied Energy, 239. DOI: 10.1016/j.apenergy.2019.02.02010.1016/j.apenergy.2019.02.020
  • 19. Parvez, I., Aghili, M., Sarwat, A. I., Rahman, S., Alam, F., 2019. Online power quality disturbance detection by support vector machine in smart meter. Journal of Modern Power Systems and Clean Energy, 7(5). DOI: 10.1007/s40565-018-0488-z10.1007/s40565-018-0488-z
  • 20. Perera, K.S., Aung, Z., Woon, W.L., 2014. Machine Learning Techniques for Supporting Renewable Energy Generation and Integration: A Survey. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8817. DOI: 10.1007/978-3-319-13290-7_710.1007/978-3-319-13290-7_7
  • 21. Renugadevi, N., Saravanan, S., Naga Sudha, C.M., 2021. IoT based smart energy grid for sustainable cites. Materials Today: Proceedings. DOI: 10.1016/j.matpr.2021.02.27010.1016/j.matpr.2021.02.270
  • 22. Sabishchenko, O., Rębilas, R., Sczygiol, N., Urbański, M., 2020. Ukraine energy sector management using hybrid renewable energy systems. Energies, 13(7). DOI: 10.3390/en1307177610.3390/en13071776
  • 23. Sharmila, P., Baskaran, J., Nayanatara, C., Maheswari, R., 2019. A hybrid technique of machine learning and data analytics for optimized distribution of renewable energy resources targeting smart energy management. Procedia Computer Science, 165. DOI: 10.1016/j.procs.2020.01.07610.1016/j.procs.2020.01.076
  • 24. Smirnova, E., Kot, S., Kolpak, E., Shestak, V., 2021. Governmental support and renewable energy production: A cross-country review. Energy, 230. DOI: 10.1016/j.energy.2021.12090310.1016/j.energy.2021.120903
  • 25. Smirnova, E., Szczepańska-Woszczyna, K., Yessetova, S., Samusenkov, V., Rogulin, R., 2021. Supplying energy to vulnerable segments of the population: Macro-financial risks and public welfare. Energies, 14(7). DOI: 10.3390/en1407183410.3390/en14071834
  • 26. Szkutnik, J., Jakubiak, D., 2012. New trends in consumption management of electric energy. Polish Journal of Management Studies, 5.
  • 27. Taherian, H., Aghaebrahimi, M.R., Baringo, L., Goldani, S.R., 2021. Optimal dynamic pricing for an electricity retailer in the price-responsive environment of smart grid. International Journal of Electrical Power and Energy Systems, 130. DOI: 10.1016/j.ijepes.2021.10700410.1016/j.ijepes.2021.107004
  • 28. Ullah, Z., Al-Turjman, F., Mostarda, L., Gagliardi, R., 2020. Applications of Artificial Intelligence and Machine learning in smart cities. In Computer Communications, 154. DOI: 10.1016/j.comcom.2020.02.06910.1016/j.comcom.2020.02.069
  • 29. Ulewicz, R., Siwiec, D., Pacana, A., Tutak, M., Brodny, J., 2021. Multi-criteria method for the selection of renewable energy sources in the polish industrial sector, Energies, 14(9), 2386. DOI 10.3390/en1409238610.3390/en14092386
  • 30. Ungureanu, S., Topa, V., Cziker, A., 2019. Industrial load forecasting using machine learning in the context of smart grid. 2019 54th International Universities Power Engineering Conference, UPEC 2019 - Proceedings. DOI: 10.1109/UPEC.2019.889354010.1109/UPEC.2019.8893540
  • 31. van Kooten, G.C., 2013. Economic analysis of feed- in tariffs for generating electricity from renewable energy sources. In Handbook on Energy and Climate Change. DOI: 10.4337/9780857933690.0001710.4337/9780857933690.00017
  • 32. Wall, W.P., Khalid, B., Urbański, M., Kot, M., 2021. Factors influencing consumer’s adoption of renewable energy. Energies, 14(17). DOI: 10.3390/en1417542010.3390/en14175420S
  • 33. Zekić-Sušac, M., Mitrović, S., Has, A., 2021. Machine learning based system for managing energy efficiency of public sector as an approach towards smart cities. International Journal of Information Management, 58. DOI: 10.1016/j.ijinfomgt.2020.10207410.1016/j.ijinfomgt.2020.102074
  • 34. Zou, H., Tao, J., Elsayed, S.K., Elattar, E.E., Almalaq, A., Mohamed, M.A., 2021. Stochastic multi-carrier energy management in the smart islands using reinforcement learning and unscented transform. International Journal of Electrical Power and Energy Systems, 130. DOI: 10.1016/j.ijepes.2021.10698810.1016/j.ijepes.2021.106988
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-94cede88-3dd3-4b77-a411-af862522d098
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.