PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The improving influence of laser stimulation on phytoremediation capabilities of selected Silene vulgaris ecotypes

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ stymulacji laserowej nasion na polepszenie właściwości fitoremediacyjnych wybranych ekotypów Silene vulgaris
Języki publikacji
EN
Abstrakty
EN
The aim of the paper is to improve the phytoremediation features of the metallophyte Silene vulgaris through photo-stimulation of seeds using a semi-conductive laser. Seeds of two Silene vulgaris ecotypes were used in the experiment. One type of seeds – “Wiry” ecotype – originated from a site contaminated with heavy metals (a serpentinite waste heap), and the other ecotype – “Gajków” – was collected on a site with naturally low heavy metal content. The seeds of both types were preconditioned with laser light with previously fixed doses: C(D0), D1, D3, D5, D7, D9. The basic radiation dose was 2.5·10-1 J∙cm-2. The soil for the experiment was serpentinite weathering waste. The seeds and plants were cultivated in the controlled conditions of a climatic chamber. Laser light indeed stimulated seed germinative capacity but better effects were obtained in “Wiry” ecotype, originating from a location contaminated with heavy metals. In the case of morphological features, a significant differentiation of stem length was found for different ecotypes, dosages and the interactions of these factors. The study showed a strong influence of laser radiation on selected element concentrations in above-ground parts of Silene vulgaris, though “Wiry” ecotype clearly accumulated more heavy metals and magnesium than the “Gajków” ecotype.
PL
Celem pracy doświadczalnej była próba polepszenia właściwości fitoremediacyjnych metalofitu Silene vulgaris poprzez fotostymulację nasion przy użyciu lasera półprzewodnikowego. Badaniom eksperymentalnym poddano nasiona dwóch ekotypów Silene vulgaris. Nasiona pierwszego, ekotyp – „Wiry”, pochodziły z obszaru zanieczyszczonego metalami ciężkimi (hałda odpadów serpentynitowych) a nasiona drugiego, ekotyp – „Gajków”, zebrano z obszaru o naturalnie niskiej zawartości metali ciężkich. Nasiona obu ekotypów, przedsiewnie kondycjonowano promieniami światła laserowego odpowiednio wcześniej ustalonymi dawkami: D0, D3, D5, D7, D9. Dawka podstawowa promieniowania wynosiła 2,5·10-1 J∙cm-2. Podłożem eksperymentalnym, w które wysiano napromieniowane i kontrolne nasiona była zwietrzelina pochodząca z hałdy odpadów serpentynitowych. Nasiona i wyrosłe z nich rośliny uprawiano w warunkach kontrolowanych fitotronu. Światło laserowe istotnie poprawiało energię i zdolność kiełkowania nasion, z tym jednak że lepsze efekty laserowej biostymulacji obserwowano u ekotypu Wiry, pochodzącego z obszaru zanieczyszczonego metalami ciężkimi. W przypadku badanych cech morfologicznych wykazano istotne zróżnicowanie długości łodyg dla ekotypów, dawek jak i interakcję badanych czynników. Na podstawie przeprowadzonych obliczeń wykazano istotny wpływ promieniowana laserowego na zmianę koncentracji wybranych pierwiastków w częściach nadziemnych Silene vulgaris, z tym jednak że rośliny ekotypu Wiry kumulowały wyraźnie więcej metali ciężkich i magnezu, niż ekotyp Gajków.
Rocznik
Strony
79--85
Opis fizyczny
Bibliogr. 44 poz., tab., wykr.
Twórcy
  • Wrocław University of Environmental and Life Sciences, Poland, Department of Botany and Plant Ecology
  • Wrocław University of Environmental and Life Sciences, Poland, Department of Genetics, Plant Breeding and Seed Production
  • Wrocław University of Environmental and Life Sciences, Poland, Department of Botany and Plant Ecology
Bibliografia
  • 1. Bratteler, M., Widmer, A., Baltisberger, M. & Edwards, P.J. (2002). Genetic architecture of associated with habitat adaptation in Silene vulgaris (Caryophyllaceae), Bulletin of the Geobotanical Institute ETH, 68, pp. 95-103.
  • 2. Borowiak, K., Kanclerz, J., Mleczek, M., Lisiak, M. & Drzewiecka, K. (2016). Accumulation of Cd and Pb in water, sediment and two littoral plants (Phragmites australis, Typha angustifolia) of freshwater ecosystem, Archives of Environmental Protection, 42, 3, pp. 47-57, DOI: 10.1515/aep-2016-0032.
  • 3. Chaney, R.L., Angle, J.S., Mcintosh, M.S., Reeves, R.D., Li, Y.M. et al. (2005). Using hyperaccumulator plants to phytoextract soil Ni and Cd, Zeitschrift für Naturforschung C, 60, 3-4, pp. 190-198.
  • 4. Ciarkowska, K. & Hanus-Fajerska, E. (2008). Remediation of soil-free grounds contaminated by zinc, lead and cadmium with the use of metallophytes, Polish Journal of Environmental Studies, 17, 5, pp. 707-712.
  • 5. Danaila-Guidea, S., Niculita, P., Ristici, E., Popa, M., Ristici, M., Burnichi, F., Draghici, M. & Geicu, M. (2011). The influence of modulated red laser light on seedlings of some annual ornamental species (Dianthus caryophyllus and Petunia hybrida), Romanian Biotechnological Letters, 16, 6, pp. 34-39.
  • 6. Dobrowolski, J.W. (1986). Laser biostimulation of nutritional prevention of essential trace elements, Magazine of Hamdard Tibbi College, Hamdard University Press, New Delhi, pp. 5-11.
  • 7. Dobrowolski, J.W., Borkowski, J. & Szymczyk, S. (1987). Laser stimulation for accumulation selenium in tomato fruits, in: Photon Emission from Biological Systems, Jeżowska-Trzebiatowska, B., Kochel, B., Slawinski, J. & Starek, W. (Eds.). World Scientific, Signapore, pp. 211-218.
  • 8. Dobrowolski, J.W. (1996). The influence of laser photostimulation of plants of bioaccumulation of elements, in: New Perspectives in the Research of Hardly Known Trace Elements, Pais, I. (Ed.). University of Horticulture and Food Industry, Budapest, pp. 47-52.
  • 9. Dobrowolski, J.W. & Różanowski, B. (1998). The influence of laser light on accumulation of selected macro-trace and ultra-elements by some plants, in: Arbeitstagung Mengen- und Spurenelemente, Anke, M. (Ed.). Schubert-Verlag, Germany.
  • 10. Ernst, W.H.O. (1996). Bioavailability of heavy metals and decontamination of soils by plants, Applied Geochemistry, 11, pp. 163-167.
  • 11. Grygierzec, B. (2013). Effect of laser stimulation of seeds on heavy metals bio-accumulation by kentucky-bluegrass (Poa pratensis L.), Annual Set The Environment Protection, 15, 3, pp. 2412-2424. (in Polish)
  • 12. Grygierzec, B. & Gowin, K. (2010). Effect of laser stimulation of seeds on heavy metals bio-accumulation in the red fescue, Grassland Science in Poland, 13, pp. 45-55. (in Polish)
  • 13. Grzesiuk, A., Dębski, H. & Horbowicz, M. (2008). The effect of selected factors on accumulation of anthocyanins in plants, Advances in Agricultural Sciences, 60, 1, pp. 81-91. (in Polish)
  • 14. Hale, K.L., Tufan, H.A., Pickering, I.J., George, G.N., Terry, N., Pilon, M. & Pilon-Smiths, E.A.H. (2002). Anthocyanins facilitate tungsten accumulation in Brassica, Physiologia Plantarum, 116, pp. 351-358.
  • 15. Hernandez, A.C., Dominguez, P.A., Cruz, O.A., Ivanov, R., Caballo, C.A. & Zepeda, B.R. (2010). Laser in agriculture, International Agrophysics, 24, pp. 407-422.
  • 16. Horn, A.J. (2000). Phytoremediation by constructed wetlands, in: Phytoremediation by contaminated soil and water, Terry, N. & Bañuelos, G. (Eds.). CRC Press LLC, Boca Raton.
  • 17. ISTA 2008. International Rules for Seed Testing. Int. Seed Testing Association Press, Bassersdorf, CH, Switzerland.
  • 18. Jakubiak, M. & Śliwka, M. (2008). Management and reclamation of lands with raised soil salinity degraded by activity of mining industry, Mineral Resources Management, 24, 3, pp. 129-138. (in Polish)
  • 19. Jakubiak, M. & Śliwka, M. (2009). The photostimulation influence on the content of selected elements in the energetic willow leaves, Environmental Protection and Natural Resources, 40, pp. 411-418. (in Polish)
  • 20. Jędrzejczyk-Korycińska, M. (2006). Floristic diversity in calamine areas of the Silesia-Cracow Monocline, Biodiversity: Research and Conservation, 3-4, pp. 340-343.
  • 21. Kabata-Pendias, A. (2011). Trace elements in soils and plants. Fourth Edition. CRC Press, Boca Raton-London-New York.
  • 22. Kandziora, M., Heflik, M., Nadgórska-Socha, A. & Ciepał, R. (2007). The synthesis of the compounds rich in -SH groups as an answer to the increased heavy metals concentration in Silene vulgaris (Caryophyllaceae), Environmental Protection and Natural Resources, 33, pp. 69-72. (in Polish)
  • 23. Kasowska, D. & Koszelnik-Leszek, A. (2014). Ecological features of spontaneous vascular flora of serpentine post-mining sites in Lower Silesia, Archives of Environmental Protection, 40, 2, pp. 33-52, DOI: 10.2478/aep-2014-0014.
  • 24. Kazakou, E., Adamidis, G.C., Baker, A.J.M., Reeves, R.D., Godino, M. & Dimitrakopulos, P.G. (2010). Species adaptation in serpentine soils in Lesbos Island (Greece): metal hyperaccumulation and tolerance, Plant and Soil, 332, pp. 369-385, DOI: 10.1007/s11104-010-0302-9.
  • 25. Klimont, K. (2006). The effects of biostimulation by laser irradiation on sowing value of seeds and yield of some crop plants, Biuletyn IHAR, 242, pp. 233-241. (in Polish)
  • 26. Koszelnik-Leszek, A. & Bielecki, K. (2013). Response of selected Silene vulgaris ecotypes to nickel, Polish Journal of Environmental Studies, 22, 6, pp. 1741-1747.
  • 27. Mierek-Adamska, A., Dąbrowska, G. & Goc, A. (2009). Genetically modified plants and strategies of soil remediation from heavy metals, Advances in Cell Biology, 3, 4, pp. 649-662. (in Polish)
  • 28. Moreira Da Silva, M., Aníbal, J., Duarte, D. & Chícharo, L. (2015). Sarcocornia fruticosa and Spartina maritima as heavy metals remediators in Southwestern European Salt Marsh (Ria Formosa, Portugal), Journal of Environmental Protection and Ecology, 16, 4, pp. 1468-1477.
  • 29. Murakami, M., Ae, N. & Ishikawa, S. (2007). Phytoextraction of cadmium by rice (Oryza sativa L.), soybean (Glycine max (L.) Merr.) and maize (Zea mays L.), Environmental Pollution, 145, pp. 341-352, DOI: 10.1016/j.envpol.2006.03.038.
  • 30. Nadgórska-Socha, A., Kandziora-Ciupa, M., Ciepał, R. & Walasek, K. (2011). Effects of Zn, Cd, Pb on physiological response of Silene vulgaris plants from selected populations, Polish Journal of Environmental Studies, 20, 3, pp. 599-604.
  • 31. Nowak, T., Kapusta, P., Jędrzejczyk-Korycińska, M., Szarek--Łukaszewska, G. & Godzik, B. (2011). The vascular plants of the Olkusz ore-bearing region, Szafer Institute of Botany, Polish Academy of Science, Kraków.
  • 32. Prośba-Białczyk, U., Szajsner, H., Spyrka, B. & Bąk, K. (2012). The influence of pre-sowing stimulation of seeds on changes in chemical composition and sucrose content in sugar beet, Journal of Elementology, 17, 4, pp. 639-648, DOI: 10.5601/jelem.2012.17.4.07.
  • 33. Rostański, A., Nowak, T. & Jędrzejczyk-Korycińska, M. (2015). Metalophilous species of vascular plants in the flora of Poland, in: Ecotoxicology. Plants, soils, metals, Wierzbicka, M. (Ed.). Wydawnictwo Uniwersytetu Warszawskiego, Warszawa. (in Polish)
  • 34. Różanowski, B. (2000). Application of laser biostimulation for sewage treatment with the use of willow Salix viminalis in a hydroponic culture, Zeszyty Naukowe. Inżynieria Środowiska/Politechnika Śląska, 45, pp. 255-265. (in Polish)
  • 35. Rybiński, W., Adamski, T. & Surma, M. (2003). The variability of two- and six-rowed DH lines of spring barley for yield structure parameters, Biuletyn IHAR, 226/227, 1, pp. 243-249. (in Polish)
  • 36. Rybiński, W. & Garczyński, S. (2004). The influence of laser light on leaves area and yield structure parameters in DH lines of spring barley (Hordeum vulgare L.), Biuletyn IHAR, 231, 2, pp. 321-329. (in Polish)
  • 37. Statistical Tool for Agricultural Research 2012.
  • 38. StatSoft Inc. 2014. STATISTICA (data analysis software system), version 12.
  • 39. Szajsner, H. (2009). The analysis of laser radiation treatment effects on grains of selected genotypes of cereals, Scientific Journal of Wrocław University of Environmental and Life Sciences series of Agronomy, 571, pp. 1-99. (in Polish)
  • 40. Śliwka, M. & Jakubiak, M. (2010). Application of laser stimulation of some hydrophytes species for more efficient biogenic elements phytoremediation, Proceedings of ECOpole, 4, 1, pp. 205-221. (in Polish)
  • 41. Wierzbicka, M. & Panufnik, D. (1998). The adaptation of Silene vulgaris to the growth on a calamine waste heap (S. Poland), Environmental Pollution, 101, pp. 415-426.
  • 42. Wierzbicka, M. & Rostański, A. (2002). Microevolutionary changes in ecotypes of calamine waste heap vegetation near Olkusz, Poland: a review, Acta Biologica Cracoviensia. Series Botanica, 44, pp. 7-19.
  • 43. Zenk, M.H. (1996). Heavy metal detoxification in higher plants - a review, Gene, 179, pp. 21-30.
  • 44. Żołnierz, L. (2007). Grassland on serpentines in Lower Silesia (SW Poland) - some aspects of their ecology, Journal of Wrocław University of Environmental and Life Sciences series of Agronomy, 555, pp. 1-231. (in Polish)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-94cdbe03-db40-4f58-af50-3e7d1813ffc8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.