PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Overview of the research on roll forging processes

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper overviews the research on roll forging processes in the last two decades. Given the broad scope of this problem, the overview focuses on processes in forging plants, omitting those performed in metallurgical plants. Three rolling processes are discussed in detail: longitudinal rolling, cross rolling and helical rolling. Each of the three techniques is discussed in terms of the main research problems and potential directions of future development.
Słowa kluczowe
Twórcy
autor
  • The State School of Higher Education, 54 Pocztowa Str., 22-100 Chełm, Poland
autor
  • Lublin University of Technology, 36 Nadbystrzycka Str., 20-618 Lublin, Poland
Bibliografia
  • 1. Baoyu W., Zheng Z., Zhenghuan H., Jianguo L., Methodology on Precision Cross Wedge Rolling of Camshaft, Steel Research International, 81 (2010) 9, 222-225.
  • 2. Bartnicki J. Pater Z., Walcowanie poprzeczno-klinowe wyrobów drążonych. Wyd. Politechniki Lubelskiej, Lublin 2005.
  • 3. Bartnicki J., Pater Z., Numerical simulation of three-rolls cross-wedge rolling of hollowed shaft, Journal of Materials Processing Technology, 164- 165 (2005), 1154-1159.
  • 4. Bartnicki J., Pater Z., Siły w procesach walcowania poprzeczno-klinowego wyrobów drążonych. Mat. VI Międzynarodowej Konferencji Naukowej „Nowe technologie i osiągnięcia w metalurgii i inżynierii materiałowej”, Częstochowa, czerwiec 2005, 235-23.
  • 5. Bartnicki J., Pater Z., The aspects of stability in cross-wedge rolling processes of hollowed shafts, Journal of Materials Processing Technology, 155- 156 (2004), 1867-1873.
  • 6. Blom T., Stonis M., Behrens B. A., Investigation of Simulation Parameters for Cross Wedge Rolling Titanium and Bainitic Grade Steel. Applied Mechanics and Materials 736 (2015), 165-170.
  • 7. Bulzak T., Tomczak J., Pater Z., Forming a Lever Preform Made of Aluminium Alloy 2014. Metalurgija 53 (2014) 4, 505-508.
  • 8. Bulzak T., Tomczak J., Pater Z., Theoretical and experimental research on forge rolling process of preforms from magnesium alloy AZ31. Archives of Metallurgy and Materials 60 (2015), 1, 437-443.
  • 9. Cai Z., Precision design of roll-forging die and its application in the forming of automobile front axles. Journal of Materials Processing Technology 168 (2005), 95-101.
  • 10. Cao Q., Hua L., Qian D., Finite element analysis of deformation characteristics in cold helical rolling of bearing steel-balls. Journal of Central South University 22 (2015), 1175-1183.
  • 11. Choi S., Yoon D. J., Lee G. A., Lee H. W., Na K. H., Cold Rolling Technique for Eliminating Cutting Process in Manufacturing Precise Product using Non-heat-treated Micro Alloys, Materials Science Forum, 475-479 (2005), 3235-3238.
  • 12. Cross-Wedge and Forging Rolls, http://www.lasco. de/umformtechnik/media/archive2/technische_in-formationen/QuerkeilundReckwalzen_2012_E.pdf
  • 13. Deng Z., Lovell M. R., Tagavi K. A., Influence of Material Properties and Forming Velocity on the Interfacial Slip Characteristics of Cross Wedge Rolling, Journal of Manufacturing Science and Engineering, 123 (2001), 647-653.
  • 14. Dong Y., Lovell M. R., Tagavi K., Analysis of interfacial slip in cross-wedge rolling: an experimentally verified finite-element model, Journal of Materials Processing Technology, 80-81 (1998), 273-281.
  • 15. Dong Y., Tagavi K. A., Lovell M. R., Analysis of interfacial slip in cross-wedge rolling: a numerical and phenomenological investigation, Journal of Materials Processing Technology, 97 (2000), 44-53.
  • 16. Dong Y., Tagavi K. A., Lovell M. R., Deng Z., Analysis of stress in cross wedge rolling with application to failure, International Journal of Mechanical Sciences, 42 (2000), 1233-1253.
  • 17. Fang G., Lei L. P., Zeng P., Three-dimensional rigid-plastic finite element simulation for two-roll cross-wedge rolling process, Journal of Materials Processing Technology, 129 (2002), 245-249.
  • 18. Fu X. P., Dean T. A., Past Developments, Current Applications and Trends in the Cross Wedge Rolling Process, International Journal of Machine Tools and Manufacture, 33 (1993), 3, 367-400.
  • 19. Gong W., Shu X., Peng W., Sun B., The Research on the Microstructure Evolution Law of Cross Wedge Rolling Asymmetric Shaft-parts Based on Parity Wedge, Applied Mechanics and Materials, 201-202 (2012), 1121-1125.
  • 20. Gontarz A., Łukasik K., Pater Z., Weroński W., Technologia kształtowania i modelowanie nowego procesu wytwarzania wkrętów szynowych. Wyd. Politechniki Lubelskiej, Lublin 2003.
  • 21. Gontarz A., Pater Z., Tofil A., Analiza metod kształtowania plastycznego wałka ze stopu Ti-6Al- 4V. Inżynieria Materiałowa, (2009) nr 5, 400-403.
  • 22. Gontarz A., Pater Z., Weroński W., Head forging aspects of new forming process of screw spike. Journal of Materials Processing Technology 153- 154 (2004), 736-740.
  • 23. Grass H., Krempaszky C., Reip T., Werner E., 3-D Simulation of hot forming and microstructure evolution. Computational Materials Science 28 (2003), 469-477.
  • 24. Grass H., Krempaszky C., Werner E., 3-D FEM-simulation of hot forming processes for the production of a connecting rod. Computational Materials Science 36 (2006), 480-489.
  • 25. He T., Wang B., Hu Z., The profile curve of die of eccentric shafts with cross wedge rolling, Advanced of Materials Research, 154-155 (2011), 1796-1799.
  • 26. Hu B., Shu X., Yu P., Peng W., The Strain Analysis at the Broadening Stage of the Hollow Railway Axle by Multi-wedge Cross Wedge Rolling, Applied Mechanics and Materials, 494-495 (2014), 457-460.
  • 27. Huang H., Chen X., Fan B., Jin Y., Shu X., Initial billet temperature influence and location investigation on tool wear in cross wedge rolling. The International Journal of Advanced Manufacturing Technology 79 (2015), 79, 1545–1556.
  • 28. Huo J., Lin J., Bai Q., Wang B., Tang X., Ji H., Prediction of microstructure and ductile damage of a high-speed railway axle steel during cross wedge rolling. Journal of Materials Processing Technology 239 (2017), 359-369.
  • 29. Huo Y., Bai Q., Wang B., Lin J., Zhou J., A new application of unified constitutive equations for cross wedge rolling of high-speed railway axle steel, Journal of Materials Processing Technology 223 (2015), 274-283.
  • 30. Ji H., Liu J., Wang B., Fu A., Xiao W., Hu Z., A new method for manufacturing hollow valves via cross wedge rolling and forging: Numerical analysis and experiment validation. Journal of Materials Processing Technology 240 (2017), 1-11.
  • 31. Ji H., Liu J., Wang B., Zhang Z., Zhang T., Hu Z., Numerical analysis and experiment on cross wedge rolling and forging for engine valves, Journal of Materials Processing Technology, 221 (2015), 233-242.
  • 32. Ji H., Liu J., Wang B., Zheng Z., Huang J., Hu Z., Cross-wedge rolling of a 4Cr9si2 hollow valve: explorative experiment and finite element simulation, The International Journal of Advanced Manufacturing Technology 77 (2015), 15-26.
  • 33. Jia Z., Zhou J., Ji J., New type of groove used to improve friction in roll forging. Journal of Central South University 21 (2014), 493-499.
  • 34. Jiang Z., Lu H., Wei D., Linghu K. Z., Zhao X., Zhang X., Wu D., Finite element method analysis of micro cross wedge rolling of metals. Procedia Engineering 81 (2014), 2463-2468.
  • 35. Jin M., Li J., Ying F., Study on Influencing Factors of Tooth Forming Quality for Gear Shaft with Cross Wedge Rolling, Applied Mechanics and Materials, 201-202 (2012), 1164-1169.
  • 36. Kazanecki J., Pater Z., Analiza termomechaniczna procesu walcowania pierścieni w trójwalcowej walcarce skośnej. Rudy i Metale Nieżelazne (2007) nr 11, 861-866.
  • 37. Kpodzo K., Fourment L., Lanse P., Montmitonnet P., An accurate time integration scheme for arbitrary rotation motion: application to metal forming simulation. International Journal of Material Forming, 9 (2016), 71-84.
  • 38. Lee H. W., Lee G. A., Yoon D. J., Choi S., Na K. H., Hwang M. Y., Optimization of design parameters using a response surface method in a cold cross-wedge rolling, Journal of Materials Processing Technology, 201 (2008), 112-117.
  • 39. Li Q., Lovell M., On the interfacial friction of a two-roll CWR process, Journal of Materials Processing Technology, 160 (2005), 245-246.
  • 40. Li R., Jiao S,. Thermal coupled FEM Analysis of Precision Roll Forging Performing of Automobile Front Axle. Advanced Materials Research 557-559 (2012), 1330-1335.
  • 41. Li R., Jiao S., Numerical Simulation for Precision Roll-Forging of Automobile Front Axle. Advanced Materials Research 602-604 (2013), 1850-1854.
  • 42. Li R., Jiao S., Roll forging technology and 3D finite element simulation of automobile front axle. Applied Mechanics and Materials 178-181 (2012), 2845-2849.
  • 43. Li R., Jiao S., Wang J., Roll-Forging Technology of Automotive Front Axle Precision Performing and Die Design. IERI Procedia 1 (2012), 166-171.
  • 44. Li X., Wang M., Du F., The coupling thermal-mechanical and microstructural model for the FEM simulation of cross wedge rolling, Journal of Materials Processing Technology, 172 (2006), 202-207.
  • 45. Lisowski J., Walcowanie kuźnicze. WNT, Warszawa 1974.
  • 46. Liu G., Jiang Z., Bian Y., Ren G., Xu Ch., Influence of Tool Wear on Center Defects of the Workpiece during Cross Wedge Rolling Process, Advanced Materials Research, 154-155 (2011), 1779-1782.
  • 47. Lovell M. R., Evaluation of Critical Interfacial Friction in Cross Wedge Rolling, Transactions of the ASME-F-Journal of Tribology 123 (2001), 2, 424-429.
  • 48. Lu H. N., Wei D. B., Jiang Z. Y., Investigation on Dimensional Accuracy in Micro Cross Wedge Rolling of Metals, Key Engineering Materials, 622-623 (2014), 943-948.
  • 49. Ma J., Yang C., Zheng Z., Zhang K., Ma W., Influence of process parameters on the microstructural evolution of a rear axle tube during cross wedge rolling. International Journal of Minerals, Metallurgy and Materials 23 (2016) no 11, 1302-1314.
  • 50. Ma W., Wang B., Zhou J., Li Q., Analysis of Square Billet Cross Wedge Rolling Process Using Finite Element Method, Applied Mechanics and Materials, 271-272 (2013), 406-411.
  • 51. Meyer M., Stonis M., Behrens B., Cross wedge rolling and bi-directional forging of preforms for crankshafts. Production Engineering. Research and Development, 9 (2015), 61-71.
  • 52. Meyer M., Stonis M., Behrnes B., A., Cross wedge rolling preforms for crankshafts, Key Engineering Materials, 504-506 (2012), 205-210.
  • 53. Minutolo F. C., Durante M., Lambiase F., Langella A., Dimensional analysis of a new type of groove for steel rebar rolling. Journal of Materials Processing Technology 175 (2006), 69-76.
  • 54. Mirhamadi S. J., Hamedi M., Ajami S., Investigating the effects of cross wedge rolling tool parameters on formability of Nimonic® 80A and Nimonic® 115 superalloys, The International Journal of Advanced Manufacturing Technology, 74 (2014), 995-1004.
  • 55. Neugebauer R., Lorenz B., Steger J., Holstein D., Cross Wedge Rolling in Preforming Titanium Alloy Aero Engine Vanes, Steel Research International, 79 (2008) no 1, 375-381.
  • 56. Novella M. F., Ghiotti A., Bruschi S., Bariani P. F., Ductile damage modeling at elevated temperature applied to the cross wedge rolling of AA6082-T6 bars. Journal of Materials Processing Technology 222 (2015), 259-267.
  • 57. Pan R., Zhang K. S., Jia Z., Analysis on processing boundary of stepped shaft during cross wedge rolling process, Advanced of Materials Research, 472-475 (2012), 775-780.
  • 58. Pater Z., A FEM Analysis of Cross-Wedge Rolling of Toothed Shafts, Acta Mechanica Slovaca, 15 (2011) no 2, 50-58.
  • 59. Pater Z., A study of cross wedge rolling, Journal of Materials Processing Technology, 80-81 (1998), 370-375.
  • 60. Pater Z., A thermomechanical analysis of the multi-wedge helical rolling (MWHR) process for producing balls. Metalurgija 55 (2016), 233-236.
  • 61. Pater Z., Analiza pękania metalu w procesie walcowania poprzeczno – klinowego. Hutnik – Wiadomości Hutnicze, (2007) nr 11, 588 – 595.
  • 62. Pater Z., Analiza procesu walcowania poprzecznego uzwojenia ślimaka. Hutnik – Wiadomości Hutnicze, (2009) nr 10, 746-751.
  • 63. Pater Z., Analysis of helical rolling process of balls formed from a head of a scrapped rail. Advances in Science and Technology Research Journal 10 (2016) no 30, 110-114.
  • 64. Pater Z., Analysis of the helical-wedge rolling process for producing a workholding bolt. Metalurgija, 53 (2014), 4, 653-656.
  • 65. Pater Z., Analysis of the Helical-Wedge Rolling Process for Producing a Long Stepped Shaft. Key Engineering Materials. 622-623 (2014), 893-89.
  • 66. Pater Z., Bartnicki J., Finished Cross-Wedge Rolling of Hollowed Cutters, Archives of Metallurgy and Materials, 51 (2006), 2, 205-211.
  • 67. Pater Z., Bartnicki J., Samołyk G., Numerical modelling of cross-wedge rolling process of ball pin, Journal of Materials Processing Technology, 164-165 (2005), 1235-1240.
  • 68. Pater Z., Bulzak T., Tofil A., Tomczak J., Helical-wedge rolling of balls. Kovarenstvi (2013) 47, 84-87.
  • 69. Pater Z., Bulzak T., Tomczak J., Cross-wedge rolling of driving shaft from titanium alloy Ti6Al4V. Key Engineering Materials, 687 (2016), 125-132.
  • 70. Pater Z., Cross-Wedge Rolling. In Comprehensive Materials Processing; Ed.; Elsevier Ltd., 3 (2014), 211–279.
  • 71. Pater Z., Finite element analysis of cross wedge rolling, Journal of Materials Processing Technology, 173 (2006), 201-208.
  • 72. Pater Z., Gontarz A., Modelowanie numeryczne procesu walcowania na gorąco uzwojenia ślimaka, Przegląd Mechaniczny, (2009), 10, 37-41.
  • 73. Pater Z., Gontarz A., Modelowanie numeryczne procesu walcowania uzębienia skośnego, Rudy i Metale Nieżelazne, 55 (2010), 6, 366-369.
  • 74. Pater Z., Gontarz A., Samołyk G., Bartnicki J., Analysis of cross rolling process of toothed titanium shafts. Archives of Metallurgy and Materials, 54 (2009), 3, 617-626.
  • 75. Pater Z., Gontarz A., Tofil A., Analysis of the Cross-Wedge Rolling Process of Toothed Shafts Made from 2618 Aluminium Alloy. Journal of Shanghai Jiaotong University (Science), 16 (2011), 2, 162-166.
  • 76. Pater Z., Gontarz A., Tomczak J., Walcowanie poprzeczno-klinowe odkuwek o kształtach złożonych. Wyd. Politechniki Lubelskiej, Lublin 2011.
  • 77. Pater Z., Gontarz A., Weroński W., Cross-wedge rolling by means of one flat wedge and two shaped rolls, Journal of Materials Processing Technology, 177 (2006), 550-554.
  • 78. Pater Z., Gontarz A., Weroński W., New method of thread rolling, Journal of Materials Processing Technology, 153-154 (2004), 722-728.
  • 79. Pater Z., Łukasik K., Stebliuk V. I., Numerical simulations of screw spike, worm and gear rolling. Vistnik Nacional’nogo technicnogo universitetu Ukraini “Kijvskij politechnicnij institut”, Serija Maszinoobuduvanija (2010), 58, 289-294.
  • 80. Pater Z., Modelowanie numeryczne procesu walcowania poprzeczno-klinowego odkuwki wałka napędowego. Mechanik, (2010), 12, 942-946.
  • 81. Pater Z., Modelowanie numeryczne procesu walcowania poprzeczno-klinowego wkrętów szynowych, Obróbka Plastyczna Metali, (2009), 3, 13-24.
  • 82. Pater Z., Modelowanie procesu walcowania poprzeczno-klinowego odkuwki wałka pośredniego. Obróbka Plastyczna Metali, (2008), 2, 21-27.
  • 83. Pater Z., Multi-wedge cross rolling of balls. Journal of Iron and Steel Research International, 20 (2013), 10, 46-50.
  • 84. Pater Z., New methods of steel ball rolling. International Journal of Materials & Product Technology, 47 (2013), 1/2/3/4, 12-22.
  • 85. Pater Z., Numerical analysis of helical rolling processes for producing steel balls. International Journal of Materials and Product Technology 53 (2016), 2, 137-153.
  • 86. Pater Z., Numerical modelling of cross wedge – rolling of rotary cutter body. Acta Mechanica Slovaca, (2008), 3A, 361-366.
  • 87. Pater Z., Numerical simulation of the cross wedge rolling process including upsetting, Journal of Materials Processing Technology, 92-93 (1999), 468-473.
  • 88. Pater Z., Samołyk G., Podstawy technologii obróbki plastycznej metali. Wyd. Politechniki Lubelskiej, Lublin 2013.
  • 89. Pater Z., Simulation of cross-wedge rolling process using the upper-bound method, Scandinavian Journal of Metallurgy, 27 (1998), 120-127.
  • 90. Pater Z., Stress State in Cross Wedge Rolling Process, Archives of Metallurgy, 48 (2003), 1, 21-35.
  • 91. Pater Z., The Analysis of the Strain in Parts Formed by Means of the Wedge-Rolls Rolling (WRR), Archives of Metallurgy and Materials, 50 (2005), 3, 675-690.
  • 92. Pater Z., Theoretical and experimental analysis of cross wedge rolling, International Journal of Machine Tools and Manufacture, 40 (2000), 49-63.
  • 93. Pater Z., Tofil A., Analiza procesu walcowania śrubowo-klinowego odkuwki korpusu noża obrotowego. Hutnik – Wiadomości Hutnicze, (2013) 10, 692-696.
  • 94. Pater Z., Tofil A., Analiza termomechaniczna procesu walcowania poprzeczno-klinowego odkuwek drążonych ze stopu aluminium 2618, Rudy i Metale Nieżelazne, (2011), 2, 153-159.
  • 95. Pater Z., Tofil A., Experimental and Theoretical Analysis of the Cross-Wedge Rolling Process in Cold Forming Conditions, Archives of Metallurgy and Materials, 52 (2007), 2, 289-297.
  • 96. Pater Z., Tofil A., Intensyfikacja odkształcenia w procesie walcowania poprzeczno-klinowego. Prace Naukowe Politechniki Warszawskiej, Mechanika, (2011) 238, 127-132.
  • 97. Pater Z., Tofil A., Tomczak J., Steel balls forming by cross rolling with upsetting. Metalurgija (2013), 1, 103-106.
  • 98. Pater Z., Tomczak J., Analiza numeryczna procesu walcowania poprzeczno-klinowego odkuwek drążonych ze stopu tytanu Ti6Al4V, Obróbka Plastyczna Metali, 21 (2010), 4, 239-247.
  • 99. Pater Z., Tomczak J., Bartnicki J., Lovell M. R., Menezes P. L., Experimental and numerical analysis of helical-wedge rolling process for producing steel balls. International Journal of Machine Tools & Manufacture, 67 (2013), 1-7.
  • 100. Pater Z., Tomczak J., Bulzak T., Wpływ kształtu obrzeża na przebieg procesu walcowania kul. Mechanik (2013), 3, 187-191.
  • 101. Pater Z., Tomczak J., Walcowanie śrubowe kul do młynów kulowych. Wyd. Politechniki Lubelskiej, Lublin 2012.
  • 102. Pater Z., Tools optimization in cross-wedge rolling, Journal of Materials Processing Technology, 138 (2003), 176-182.
  • 103. Pater Z., Walcowanie poprzeczno-klinowe. Wyd. Politechniki Lubelskiej, Lublin 2009.
  • 104. Pater Z., Wstępna analiza numeryczna procesu walcowania poprzeczno-klinowego odkuwek ze stopu magnezu AZ31. Hutnik – Wiadomości Hutnicze, (2009), 8, 641-643.
  • 105. Pater Z., Wstępna analiza teoretyczna procesu walcowania poprzeczno-klinowego wyrobów drążonych, Hutnik – Wiadomości Hutnicze, (2002), 11, 426-429.
  • 106. Peng W. F., Zhang J. H., Huang G. X., Liu W. P., Shu X. D., Zhu J., Stress distribution during the cross-wedge rolling of composite 42CrMo/Q235 laminated shafts, The International Journal of Advanced Manufacturing Technology 83 (2016), 145-155.
  • 107. Peng W., Zhang K., Theoretical Research of the Axial Force about Cross Wedge Rolling, Key Engineering Materials, 433 (2010), 27-32
  • 108. Peng W., Zheng S., Chiu Y., Shu X., Zhan L., Multi-wedge Cross Wedge Rolling Process of 42CrMo4 Large and Long Hollow Shaft. Rare Metal Materials and Engineering 45 (2016), 4, 836-842.
  • 109. Piedrahita F., Garcia Arana L., Chastel Y., Three Dimensional Numerical Simulation of Cross- Wedge Rolling of Bars, Proceedings of the 8th International Conference on Technology of Plasticity ICTP, Verona, 2005 (CD ROM).
  • 110. Precision Roll Forging for Automotive Front Axles and Crankshafts—Die Forging Line, http://www.brimet.ac.cn/en/productinfo. aspx?cid=453&id=23&i=5.
  • 111. Qiang Y. F., Song P. B.: Analysis on temperature distribution in cross wedge rolling process with finite element method, Journal of Materials Processing Technology, 187-188 (2007), 392-196. Qui P., Xiao H., Li M., Effect of Non-uniform Temperature Field on Piece Rolled by Three-roll Cross Wedge Rolling, Applied Mechanics and Materials, 16-19 (2009), 456-461.
  • 112. Regone W., da Silva M., Button S., Numerical and experimental analysis of the microstructural evolution during cross wedge rolling of V-Ti microalloyed steel, REM - Revista Escola de Minas, Metalurgia & Materials, 62 (2009) 4, 495-502.
  • 113. Ren X., Liu Y., Study on the Influence of Deforming Velocity on Steel Ball Quality Based on DEFORM. Applied Mechanics and Materials, 117- 119 (2012), 1806-1809.
  • 114. Ren X., Loi Y., Jin Y., Optimization of Screw Rolling Ball Process Parameters Based on Orthogonal Test. Applied Mechanics and Materials, 201-202 (2012), 1190-1193.
  • 115. Sawamiphakdi K., Pauskar P. M., Lahoti G. D., Applications of finite element modeling in industrial forming processes at the Timken Company. Proc. of NUMIFORM 2004, 654-659.
  • 116. Ščukin V. Ja., Kozevnikova G. V., 3rd Int. Scientific Technical Conference “Advanced Methods and Technologies for Materials Manufacture and Processing”, Minsk 15-17.10.2008, 195-196.
  • 117. Ščukin V. Ja., Kozevnikova G. V., 3rd Int. Scientific Technical Conference “Advanced Methods and Technologies for Materials Manufacture and Processing”, Minsk 15-17.10.2008, 199-200.
  • 118. Ščukin V. Ja., Kozevnikova G. V., Petrenko V. V., Cross-Wedge Rolling at Pti Nas Belarus, Applied Mechanics and Materials, 201-202 (2012), 1198-1202.
  • 119. Sedighi M., Mahmodi M., An approach to simulate cold roll-forging of turbo-engine thin compressor blade. Aircraft Engineering and Aerospace Technology: An International Journal 81/3 (2009), 191-198.
  • 120. Shen F., Yu W., Peng W., Shu X., Yu C., The Strain Analysis of Plate Cross Wedge Rolling of Spiral Shaft Parts, Advanced Materials Research, 941-944 (2014), 1895-1900.
  • 121. Shi X., Wang B., Li Z., Optimization of Pass Parameters on Two-Grooves Skew Rolling for Al Ball. Key Engineering Materials, 419-420 (2010), 313-316.
  • 122. Shi X., Wang B., Numerical simulation of Al. ball forming process in skew rolling. Materials Science Forum, 704-705 (2012), 151-154.
  • 123. Shu X. D., Wei J., Liu C., Study on the control of end quality by one closed cross wedge rolling based wedge block. Metalurgija 56 (2017), 1-2, 123-126.
  • 124. Shu X., Li Z., Zu W., Bending Analysis and Measures of the Forming of Automobile Semi-axle on Cross-Wedge Rolling with Multi-wedge, Applied Mechanics and Materials, 184-185 (2012), 75-79.
  • 125. Shu X., Sun B., Xiao M., Influence regularities of axial force of cross wedge rolling symmetric shaft-parts about technical parameters, Advanced Materials Research 314-316 (2011), 589-593.
  • 126. Shu X., Wei X., Chen L., Influence Analysis of Block Wedge on Rolled-piece End Quality in Cross Wedge Rolling, Applied Mechanics and Materials, 101-102 (2012), 1055-1058.
  • 127. Shu X., Wei X., Li Ch., Hu Z., The influence rules of stress about technical parameters on synchronous rolling railway axis with multi-wedge cross-wedge rolling, Applied Mechanics and Materials, 37-38 (2010), 1482-1488.
  • 128. Sińczak J., Łukaszek-Sołek A., Bednarek S., Modelowanie numeryczne wielooperacyjnego procesu kucia matrycowego. Obróbka Plastyczna Metali. Nr 2 (2005).
  • 129. Sun B., Zeng X., Shu X., Peng W., Sun P., Feasibility Study on Forming Hollow Axle with Multi-wedge Synchrostep by Cross Wedge Rolling, Applied Mechanics and Materials, 201-202 (2012), 673-677.
  • 130. Tomczak J., Pater Z., Bartnicki J., Analiza numeryczna procesu walcowania wałków drążonych z uzębieniami, Hutnik – Wiadomości Hutnicze, (2011), 8, 678-681.
  • 131. Tomczak J., Pater Z., Bartnicki J., Chyła P., Kazanecki J., Wpływ metody kalibrowania wykrojów śrubowych na jakość kul walcowanych w walcarkach skośnych. Przegląd Mechaniczny (2012), 11, 33-39.
  • 132. Tomczak J., Pater Z., Bartnicki J., Modelowanie numeryczne procesu walcowania wielostopniowego uzębionego walka drążonego, Mechanik (2011), 11, 894-899.
  • 133. Tomczak J., Pater Z., Bartnicki J., Skew rolling of balls in multiple helical impressions Archives of Metallurgy and Materials, 58 (2013), 4, 1072-1076.
  • 134. Tomczak J., Pater Z., Bulzak T. ,Thermo-mechanical Analysis of a Lever Preform Forming from Magnesium Alloy AZ31. Archives of Metallurgy and Materials 57 (2012), 4, 1211-1218.
  • 135. Tomczak J., Pater Z., Bulzak T., Designing of screw impressions in the helical rolling of balls. Archives of Civil and Mechanical Engineering 14 (2014), 104-113.
  • 136. Tomczak J., Pater Z., Próby doświadczalne procesu walcowania poprzeczno-klinowego odkuwek ze stopów aluminium w gatunkach PA38 i 2618A. Obróbka Plastyczna Metali, 21 (2010), 4, 249-260.
  • 137. Tomczak J., Pater Z., Teoretyczno-doświadczalna analiza procesu walcowania kul w walcach śrubowych. Hutnik – Wiadomości Hutnicze (2013), 2, 151-156.
  • 138. Urankar S., Lovell M., Morrow C., Li Q., Kawada K., Development of a critical friction model for cross wedge rolling hollow shafts, Journal of Materials Processing Technology, 137 (2006), 539-544.
  • 139. Urankar S., Lovell M., Morrow C., Li Q., Kawada K., Establishment of failure conditions for cross-wedge rolling of hollow shafts, Journal of Materials Processing Technology, 177 (2006), 545-549.
  • 140. Van Hai D., Hong Hue D. T., Finite element simulation and experimental study on internal fracture of railway sleeper screw during cross wedge rolling process. Materials Science Forum, 804 (2015), 331-314.
  • 141. VeraCAD – Highlights, http://www.netformmetal.com/images/yazilimlar/veracad/VeraCAD%20 -%20Highlights.pdf.
  • 142. Wang M., Li X., Du F., Analysis of Metal Forming in Two-Roll Cross Wedge Rolling Process Using Finite Element Method, Journal of Iron and Steel Research, International, 16 (2009), 1, 38-43.
  • 143. Wang M., Li X., Du F., Zheng Y., A coupled thermal-mechanical and microstructural simulations of the cross wedge rolling process and experimental verification, Materials Science and Engineering A, 391 (2005), 305-312.
  • 144. Wang M., Li X., Du F., Zheng Y., Hot deformation of austenite and prediction of microstructure evolution of cross-wedge rolling, Materials Science and Engineering A, 379 (2004), 133-140.
  • 145. Wang Q., He F., A review of developments in the forging of connecting rods in China. Journal of Materials Processing Technology 151 (2004), 192-195.
  • 146. Wang Q., Xiao J., Study on the method for grove design in the helical rolling of steel balls. Journal of Materials Processing Technology, 55 (1995), 340-344.
  • 147. Wang X., Zhang K., Liu J., Hu Z., The effect and experimental research of forming angle on internal defect of valve roughcast formed by single cross wedge rolling, Advanced Materials Research, 230-232 (2011), 389-394.
  • 148. Wei D., Lu H., Jiang Z., Manabe K., Optimization of Micro Cross Wedge Rolling and Surface Morphology of Micro Stepped Components, Key Engineering Materials, 622-623 (2014), 964-969.
  • 149. Wei X., Shu X.: Study on Production Mechanism of End Concavity in Cross Wedge Rolling, Advanced Materials Research, 314-316 (2011), 468-472.
  • 150. Weroński W., Gontarz A., Pater Z., Some Aspects of New Forming Process of Screw Spike, Key Engineering Materials, 233-236 (2003), 407-412.
  • 151. Xia H., Guo X., Ji C., Numerical Simulation of Blank-making Roll Forging Process for Heavy Automotive Front Axle. Proceedings of 2012 International Conference on Mechanical Engineering and Materials Science (MEMS 2012), 481-484.
  • 152. Xing X., Shu X., Finite Element Analysis of Stress and Strain in Two-wedge Cross Wedge Rolling Step-shaft Part, Materials Science Forum, 575-578 (2008), 255-260.
  • 153. Xiong Y., Sun S., Li Y., Zhao J., Lu Z., Zhao D., Zheng Y., Fu W., Effect of warm cross-wedge rolling on microstructure and mechanical property of high carbon steel rods, Materials Science and Engineering A 431 (2006), 152-157.
  • 154. Xu C. G., Liu G. H., Ren G. S., Shen Z., Ma C. P., Ren W. W., Finite Element Analysis of Axial Feed Bar Rolling, Acta Metallurgica Sinica (English Letters), 20 (2007), 4, 463-468.
  • 155. Xuedao S., Chuanmin L., Jing Z., Zhenghuan H., Theoretical and experimental study of varying rule of rolling-moment about cross-wedge rolling, Journal of Materials Processing Technology, 187- 188 (2007), 752-756.
  • 156. Yan H., Liu J., Hu Z., Han P., Mao H., Ma S., Effects of Die tooth Profile on Forming Helical Tooth Shaft in Cross Wedge Rolling, Applied Mechanics and Materials, 274 (2013), 165-169.
  • 157. Yan H., Mao H., Li G., He X., Liu J., Hu Z.: Effect of Blank Shape and Size on the Forming Quality of Thread Shaft Rolling in Cross Wedge Rolling, Advanced Materials Research, 853 (2014), 605-609.
  • 158. Yan H., Wang L., Liu Y., Li G., Liu J., Hu Z., Effect of Thread Helix Angle on the Axial Metal Flow of Cross Wedge Rolling Thread Shaft, Applied Mechanics and Materials, 440 (2014), 177-181.
  • 159. Yang C., Ku Z., Research on the ovality of hollow shafts in cross wedge rolling with mandrel. The International Journal of Advanced Manufacturing Technology 83 (2016), 67-76.
  • 160. Yang C., Ma J., Hu Z., Analysis and design of cross wedge rolling hollow axle sleeve with mandrel. Journal of Materials Processing Technology 239 (2017), 346-358.
  • 161. Yang C., Zhang K., Hu Z., Development of central minute cavity in the workpiece of cross wedge rolling, Applied Mechanics and Materials, 215- 216 (2012), 766-770.
  • 162. Yang C., Zhang K., Hu Z., Simulation Analysis of Cross Wedge Rolling Hollow Parts With Mandrel, Advanced Materials Research, 538-541 (2012), 542-547.
  • 163. Yang S. C., Chen C. K., The surface geometry of rollers with skew rolling of steel balls. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 215 (2001), 523-532.
  • 164. Yang S., Kou S., Deng Ch., Research and application of precision roll-forging taper-leaf spring of vehicle. Journal of Materials Processing Technology 65 (1997), 268-271.
  • 165. Ying F., Shen J., Wu L., Study on the Process of Gear Shaft Formed by Cross Wedge Rolling Based on Deform, Advanced Materials Research, 497 (2012), 55-60.
  • 166. Yoshimura H., Tanaka K., Precision forging of aluminum and steel. Journal of Materials Processing Technology 98 (2000), 196-204.
  • 167. Yuan W., Wang Z., Shi B., Cheng G., Theoretical Analysis of the Displacement on the End-Section of the Rolled Parts for Multi-wedge Cross Wedge Rolling, Advanced Materials Research, 538-541 (2012), 1162-1169.
  • 168. Zhao F., Liu J., Huang J., Hu Z., Analysis of the wedge tip fillet for central defects in the process of cross wedge rolling 4Cr9Si2 valve, Advanced Materials Research, 706-708 (2013), 3-6.
  • 169. Zhao J., Lu L., The application of multi-wedge cross wedge rolling forming long shaft technology, Applied Mechanics and Materials, 101-102 (2012), 1002-1005.
  • 170. Zheng Z., Wang B., Hu Z., Study on Roller Profile for Cam Forming by Cross Wedge Rolling, Applied Mechanics and Materials, 217-219 (2012), 1713-1718.
  • 171. Zhou J., Jia Z., Liu H., Wang M., A study on simulation of deformation during roll-forging process using system of special shaped and hat groove. Reviews on Advanced Materials Science 33 (2013), 354-359.
  • 172. Zhou J., Xiao C., Yu Y., Jia Z., Influence of Tool Parameters on Central Deformation in Two-wedge Two-roll Cross-wedge Rolling, Advanced Materials Research, 486 (2012), 478-483.
  • 173. Zhou J., Yu Z., Zeng Q., Analysis and experimental studies of internal voids in multi-wedge cross wedge rolling stepped shaft, The International Journal of Advanced Manufacturing Technology, 72 (2014), 1559-1566.
  • 174. Zhuang W, HuaL., Wang X., Liu Y., Dong L., Dai H., The influences of process parameters on the preliminary roll-forging process of the AISI-1045 automobile front axle beam. Journal of Mechanical Science and Technology 30 (2016), 2, 837-846.
  • 175. Zhuang W., Hua L., Wang X., Liu Y., Han X., Dong L., Numerical and experimental investigation of roll-forging of automotive front axle beam. The International Journal of Advanced Manufacturing Technology 79 (2015), 1761-1777.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-94ca92d4-89a0-4d56-9818-dcb94045cf55
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.