PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Influence of modified muscle morphology and activity pattern on the results of musculoskeletal system modelling in cerebral palsy patient

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of the present study was to evaluate the influence of modified morphological parameters of the muscle model and excitation pattern on the results of musculoskeletal system numerical simulation in a cerebral palsy patient. Methods: The modelling of the musculoskeletal system was performed in the AnyBody Modelling System. The standard model (MoCap) was subjected to modifications consisting of changes in morphological parameters and excitation patterns of selected muscles. The research was conducted with the use of data of a 14-year-old cerebral palsy patient. Results: A reduction of morphological parameters (variant MI) caused a decrease in the value of active force generated by the muscle with changed geometry, and as a consequence the changes in active force generated by other muscles. A simulation of the abnormal excitation pattern (MII variant) resulted in the muscle’s additional activity during its lengthening. The simultaneous modification of the muscle morphology and excitation pattern (MIII variant) points to the interdependence of both types of muscle model changes. A significant increase in the value of the reaction force in the hip joint was observed as a consequence of modification of the hip abductor activity. Conclusions: The morphological parameters and the excitation pattern of modelled muscles have a significant influence on the results of numerical simulation of the musculoskeletal system functioning.
Rocznik
Strony
63--75
Opis fizyczny
Bibliogr. 28 poz., rys., wykr.
Twórcy
autor
  • Department of Biocybernetics and Biomedical Engineering, Faculty of Mechanical Engineering, Bialystok University of Technology, Bialystok, Poland
  • Department of Biocybernetics and Biomedical Engineering, Faculty of Mechanical Engineering, Bialystok University of Technology, Bialystok, Poland
Bibliografia
  • [1] Arnold A. S., Asakawa D. J., Delp S. L., Do the hamstrings and adductors contribute to excessive internal rotation of the hip in persons with cerebral palsy?, Gait Posture, 2000, 11:181-190.
  • [2] Barrett R. S., Lichtwark G. A., Gross muscle morphology and structure in spastic cerebral palsy: a systematic review, Dev Med Child Neurol, 2010, 52(9):794-804.
  • [3] Bax M., Goldstein M., The Definition and Classification of Cerebral Palsy, Dev Med Child Neurol, 2007, 49: 144-151.
  • [4] Bergmann G., Deuretzbacher G., Heller M., Graichen F., Rohlmann A., Strauss J., Duda G.N., Hip contact forces and gait patterns from routine activities, J Biomech, 2001, 34(7): 859-871.
  • [5] Desailly E., Simulation of muscle retraction in Cerebral Palsy (SiMusCP). Validation of a decision support system for surgical lengthening of contractured muscles, Comput Method Biomech, 2012, 15, 263:265.
  • [6] De Freitas T., Muscle torque of healthy individuals and individuals with spastic hemiparesis after passive static streching, Acta Bioeng Biomech, 2016, 18(1):35-39.
  • [7] Dziuba A. K., Index of mechanical work in gait of children with cerebral palsy, Acta Bioeng Biomech, 2014, 16(3): 77:87.
  • [8] Dziuba A., Integral method (IM) as a quantitative and objective method to supplement the GMFCS classification of gait in children with cerebral palsy (CP), Acta Bioeng Biomech, 2013, 15(2), 105:111.
  • [9] Gage J. R., Gait Analysis: Principles and Applications, J Bone Joint Surg Am, 1995, 77:1607-1623.
  • [10] Hainisch R., Gfoehler M., Zubayer-Ul-Karim M., Pandy M. G., Method for determining musculotendon parameters in subject-specific musculoskeletal models of children developed from MRI data, Multibody Syst Dyn, 2012, 28(1): 143-156.
  • [11] Handsfield G. G. Meyer B.H., Abel M. F., Blemker S.S., Heterogeneity of muscle sizes in the lower limbs of children with cerebral palsy, Muscle Nerve, 2016 53(6): 933-945.
  • [12] Heinen F., Lund M. E., Rasmussen J., de Zee M., Muscle-tendon unit scaling methods of Hill-type musculoskeletal models: An overview, P I MECH ENG H, 2016,230 (10): 976-984.
  • [13] Jonkers I., Musculo-tendon length and lengthening velocity of rectus femoris in stiff knee gait, Gait Posture, 2006, 23: 222-229.
  • [14] Krogt M., Dynamic spasticity of plantar flexor muscles in cerebral palsy gait, J Rehabil Med, 2010; 42: 656-663.
  • [15] Lampe R., Grassl S., Mitternacht J., Gerdesmeyer L., Gradinger R., MRT measurements of muscle volumes of the lower extremities of youths with spastic hemiplegia caused by cerebral palsy, Brain Dev, 2006, 28:500-506.
  • [16] Lance J. W., What is spasticity?, Lancet, 1990, 335:606.
  • [17] Leighton R. D., A functional model to describe the action of the adductor muscles at the hip in the transverse plane, Physiotherapy Theory and Practice, 2006, 22(5):251-262
  • [18] Malaiya R., McNee A. E., Fry N. R., Eve L. C., Gough M., Shortland A.P., The morphology of the medial gastrocnemius in typically developing children and children with spastic hemiplegic cerebral palsy. J Electromyogr Kines, 2007, 17: 657-663.
  • [19] Miller F., Cerebral palsy, Springer 2006, ISBN 0-387-20437-7
  • [20] Mohagheghi A.A., Khan T., Meadows T.H., Giannicas K., Baltzopoulos V., Maganaris C.N., Differences in gastrocnemius muscle architecture between the paretic and non-paretic legs in children with hemiplegic cerebral palsy, Clin Biomech, 2007, 22:718–724.
  • [21] Odding E., Roebroeck M. E., Stam H. J., The epidemiology of cerebral palsy: incidence, impairments and risk factors, Disabil Rehabil, 2006, 28(4):183-191.
  • [22] Oskoui M., Coutinho F., Dykeman J., Jette N., An update on the prevalence of cerebral palsy: a systematic review and metaanalysis, Dev Med Child Neurol, 2013, 55(6):509-519.
  • [23] Sheehan F. T. Zając F. E., Drace J. E., Using cine phase contrast magnetic resonance imaging to noninvasively study in vivo knee dynamics, J Biomech, 1998, 31: 21-26.
  • [24] Shortland A. P., Harris C. A., Gough M., Robinson R., Architecture of the medial gastrocnemius in children with spastic diplegia, Dev Med Child Neurol, 2002, 44:158-163.
  • [25] Syczewska M., Święcicka A., Are electromyographic patterns during gait related to abnormality level of the gait in patients with spastic cerebral palsy? , Acta Bioeng Biomech, 2016, 18(3), 91:96.
  • [26] van der Krogt M. M., Bar-On L., Kindt T., Desloovere K., Harlaar J., Neuromusculoskeletal simulation of instrumented contracture and spasticity assessment in children with cerebral palsy, J Neuroeng Rehabil, 2016,13:64.
  • [27] Damsgaard M., Rasmussen J., Soren T. C., Surma E., de Zee M.,: Analysis of musculoskeletal systems in the AnyBody modeling system, Simul Model Pract Th 14:1100-1111, 2006
  • [28] Thielen, T., Maas, S., Zürbes, A., Waldmann, D. & Kelm, J., Development of a hip interim prosthesis (spacer) using finite element analysis taking into account the muscle and joint forces from AnyBody, 2009, ANSYS Conference & 27th.CADFEM Users’ Meeting, http://prod.anybodytech.combineservices.dk/downloads/publications., Accessed 20 January 2017.
Uwagi
The research was performed as a part of the projects MB/WM/5/2015 and S/WM/1/2014 and was financed with the funds for science from the Polish Ministry of Science and Higher Education.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-94c1e459-d674-4af0-aed8-81489c63635c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.