PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Derivation of the planar square coil litz-wire winding resistance for sinusoidal currents

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Wyprowadzenie równania na rezystancję uzwojenia planarnej cewki w kształcie kwadratu pracującej w obwodach rezonansowych z prądem sinusoidalnym
Języki publikacji
EN
Abstrakty
EN
In this paper the AC winding resistance of the litz wire wound planar square coil is derived. The Biot-Savart’s law is used to derive analytical expression for the AC winding resistance. Analytical calculations are done for two planar square coils of different size. Experimental verification and comparison of the calculated and measured winding resistances are performed.
PL
W artykule tym, wyprowadzone zostało równanie narezystancję uzwojenia cewek planarnych w kształcie kwadratu przewodzących prąd przemienny. Rezystancja takich cewek nie jest stała lecz zmienia się wraz ze wzrostem czestotliwości. Przyczyną zmiany tejże rezystancji jest przede wszystkim efekt zbliżeniowy, który powstaje podczas indukowania się prądow wirowych w uzwojeniu. Wpływ efektu zbliżeniowego na rezystancje uzwojenia jest silniejszy wraz ze wzrostem czestotliwości. Analityczne równanie na rezystancję uzwojenia dla prądów przemiennych takiej cewki, wyprowadzono bazując na prawie Biot-Savart’s. Experymentalna weryfikacja i porównanie teoretycznych obliczeń została również dokonana i przedstawiona w tym artykule.
Rocznik
Strony
105--109
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
  • ABB Corporate Research Center Krakow Poland
  • ABB Corporate Research Center Krakow Poland
  • ABB Corporate Research Center Krakow Poland
  • Electric Energy Systems Integration Group at Oak Ridge National LaboratoryWojda
Bibliografia
  • [1] P. L. Dowell, "Effects of eddy currents in transformer winding," Proc. IEE, vol. 113, no. 8, pp. 1387-1394, Aug. 1966.
  • [2] Q. Deng et al., "Frequency-dependent resistance of litz-wire square solenoid coils and quality factor optimization for wireless power transfer" IEEE Transactions on Industrial Electronics, vol. 63, no. 5, pp. 2825-2837, May 2016.
  • [3] G. W. O. Howe, "The high-frequency resistance of multiplystranded insulated wire," Proc. Royal Soc. Lon. A, vol. 93, pp. 468-492, September 1917.
  • [4] M. Bartoli, N. Noferi, A. Reatti, and M. K. Kazimierczuk, "Modeling litz-wire winding losses in high-frequencies power inductors, " Proceedings of the IEEE Power Electronics Specialists Conference, Baveno, Italy, June 24-27, 1996. pp. 1960-1966.
  • [5] P. N. Murgatroyd, "Calculation of proximity losses in multistrandedconductorbranches," IEEEProceedings,PartA,vol. 136, no. 3, pp. 115-120, May 1989.
  • [6] J. A. Ferreira, "Analytical computation of AC resistance of round and rectangular litz-wire windings," IEE Proceedings, Part B, Electric Power Applications, vol. 139, no 1, pp. 21-25, Jan. 1992.
  • [7] A. W. Lotfi and F. C. Lee, "A high frequency model for litz wire for switch-mode magnetics," Proc. of the 1993 IEEE Industry Applications Society Annual Meeting, vol. 2, pp. 1169-1175, 1993.
  • [8] J. Schutz, J. Roudet, and A. Schellmanns, "Modeling litz-wire windings," Proc. IEEE Industry Appl. Soc. Annual Meeting (IAS), New Orleans, LA, vol. 2, pp. 1190-1195, October 5-9, 1997.
  • [9] F. Tourkhani and P. Viarouge, "Accurate analytical model of winding losses in round litz-wire windings," IEEE Tran. Magn., vol. 37, no. 1, pp. 538–543, Jan. 2001.
  • [10] J. Acero, P. J. Hernandez, J. M. Burdio, R. Alonso and L. A. Barragdan, "Simple resistance calculation in litz-wire planar windingsforinductioncookingappliances,"IEEETransactions on Magnetics, vol. 41, no. 4, pp. 1280-1288, April 2005.
  • [11] Acero, J., Burdio, J.M., Alonso, R., Barragan, L.A., Puyal, D.: "Frequency-dependent resistance in litz-wire planar windings for domestic induction heating appliances," IEEE Trans. Pow. Electron., 21, (4), pp. 856–866, 2006.
  • [12] A. Rosskopf, E. Bar, and C. Joffe, "Influence of inner skin- and proximity effects on conduction in litz wires," IEEE Tran. Pow. Electron., vol. 29, no. 10, pp. 5454–5461, Oct. 2006.
  • [13] H. Rossmanith, M. Doebroenti, M. Albach, and D. Exner, "Measurement and characterization of high frequency losses in non-ideal litz wires," IEEE Tran. Pow. Electron., vol. 26, no. 11, pp. 3386–3394, Nov. 2011.
  • [14] M. K. Kazimierczuk, High-Frequency Magnetic Components 2nd Ed. John Wiley & Sons, Chichester, UK, 2012.
  • [15] R. P. Wojda and M. K. Kazimierczuk, "Winding resistance of litz-wire and multi-strand inductors," IET Power Electronics, vol. 5, no. 2, pp. 257-268, Feb. 2012.
  • [16] R. P. Wojda and M. K. Kazimierczuk, "Analytical optimization of solid-round-wire windings," IEEE Transactions on Industrial Electronics, vol. 60, no. 3, pp. 1033-1041, March 2013.
  • [17] R. P. Wojda and M. K. Kazimierczuk, "Winding resistance and power loss of inductors with litz and solid-round wires," IEEE TransactionsonIndustryApplications, vol.54, no.4, pp.35483557, July 2018.
  • [18] R. P. Wojda and M. K. Kazimierczuk, "Analytical winding size optimisation for different conductor shapes using Ampère’s Law," IEET Power Electron., vol.6, no. 6, pp. 1058-1068, June 2013.
  • [19] R. Bosshard, "Multi-Objective Optimization of Inductive Power Transfer Systems for EV Charging”, Ph.D. dissertation, ETH Zurich, 2015.
  • [20] Kai Song, Kim Ean Koh, Chunbo Zhu, Jinhai Jiang, Chao Wang and Xiaoliang Huang, "A Review of Dynamic Wireless Power TransferforIn-MotionElectricVehicles, WirelessPower Transfer - Fundamentals and Technologies", Wireless power transfer - fundamentals and technologies, 2016.
  • [21] G. A. Covic and J. T. Boys, "Modern Trends in Inductive Power Transfer for Transportation Applications," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 1, no. 1, pp. 28-41, March 2013.
  • [22] Yang Li et al., "Wireless energy transfer system based on high Q flexible planar-Litz MEMS coils," The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems, pp. 837-840, Suzhou, 2013.
  • [23] J. Zhang, G. Song, Y. Li, G. Qiao and Z. Li, "Battery swapping and wireless charging for a home robot system with remote humanassistance,"IEEETransactionsonConsumerElectronics, vol. 59, no. 4, pp. 747-755, November 2013.
  • [24] C. Qiu, K. T. Chau, C. Liu and C. C. Chan, "Overview of wireless power transfer for electric vehicle charging," 2013 World Electric Vehicle Symposium and Exhibition (EVS27), pp. 1-9, Barcelona, 2013.
  • [25] M. Bojarski, E. Asa and D. Czarkowski, "Effect of wireless power link load resistance on the efficiency of the energy transfer," 2014 IEEE International Electric Vehicle Conference (IEVC), Florence, 2014, pp. 1-7.
  • [26] S.Y.R.Hui, W.ZhongandC.K.Lee, "ACriticalReviewofRecent Progress in Mid-Range Wireless Power Transfer," IEEE Transactions on Power Electronics, vol. 29, no. 9, pp. 45004511, Sept. 2014.
  • [27] E. Asa, K. Colak, D. Czarkowski and B. Tamyurek, "Efficiency analysis of a bi-directional DC/DC converter for wireless energy transfer applications," 2015 IEEE Energy Conversion CongressandExposition(ECCE),Montreal, QC,pp.594-598, 2015.
  • [28] S.LiandC.C.Mi,"WirelessPowerTransferforElectricVehicle Applications," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 1, pp. 4-17, March 2015.
  • [29] X. Lu, P. Wang, D. Niyato, D. I. Kim and Z. Han, "Wireless charging technologies: fundamentals, standards, and network applications," in IEEE Communications Surveys and Tutorials, vol. 18, no. 2, pp. 1413-1452, Q2 2016.
  • [30] M. Debbou and F. Colet, "Inductive wireless power transfer for electric vehicle dynamic charging," 2016 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW), pp. 118-122, Knoxville, TN, 2016.
  • [31] R. Bosshard and J. W. Kolar, "Inductive power transfer for electric vehicle charging: Technical challenges and tradeoffs," IEEE Power Electronics Magazine, vol. 3, no. 3, pp. 22-30, Sept. 2016.
  • [32] T. Chunsen, D. Pengqi, W. Zhihui, H. Yongcan and D. Lin, "Parameter optimization method for the wireless charging system of mowing robot," 2017 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW), pp. 106-110, Chongqing, 2017.
  • [33] Z. Luo and X. Wei, "Analysis of square and circular planar spiral coils in wireless power transfer system for electric vehicles," IEEE Transactions on Industrial Electronics, vol. PP, no. 99, pp. 1-1., 2017.
  • [34] "Wirelesspowertransferforlight-dutyplug-in/electricvehicles and alignment methodology," SAE J2954, Rev. May 2016.
  • [35] https://www.qualcomm.com/products/halo
  • [36] https://www.pluglesspower.com/
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-94bda846-e427-4a9a-be05-890f987390ac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.