PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Lead Exposure in Trader Communities in Industrial Area of the Battery Recycling Plant: Tangerang, Indonesia

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study was to look at the risk of community around the battery recycling plant in terms of the exposure to lead dust. The number of respondents amounted to 60 people from an industrial area and a residential area. The sample of the industrial area included 30 respondents with a composition of 15 men and 15 women. The same number of respondents was also examined in the residential area as a control area, located 5 km from the industrial area. Respirable dust was measured using a personal dust sampler, the concentration of lead in dust was measured using GF-AAS, while as a biomarker of exposure, the lead content in urine was measured using GF-AAS. The average values for respirable lead in industrial and residential areas are 0.92 μg/m3 and 0.92–1.34 μg/m3. The analysis of the lead content in urine for the industrial and residential areas produced an average value of 119 ppb and 123 ppb. The average value of HI for the lead exposure on the industrial and residential areas are in danger (HI > 1) which is 3.6 ± 1.94 and 2.18 ± 1.49. The OR values for the respondents in the industrial area compared to the residential areas amounting to 1.17 for the category of HI lead exposure and 1.22 for the category of lead in urine.
Rocznik
Strony
264--270
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
  • Bandung Institut of Technology, Departement of Environmental Engineering, Bandung, Indonesia
autor
  • Bandung Institut of Technology, Departement of Environmental Engineering, Bandung, Indonesia
  • Bandung Institut of Technology, Departement of Environmental Engineering, Bandung, Indonesia
Bibliografia
  • 1. Abd El-Samad, M., Hanafi, H.A. 2017. Analysis of toxic heavy metals in cigarettes by Instrumental Neutron Activation Analysis. Journal of Taibah University for Science, 11(5), 822-829.
  • 2. Aceto, M., Abollino, O., Bruzzoniti, M.C., Mentasti, E., Sarzanini, C., Malandrino, M. 2002. Determination of metals in wine with atomic spectroscopy (flame-AAS, GF-AAS and ICP-AES); a review. Food Additives & Contaminants, 19(2), 126-133.
  • 3. ACGIH. 2004. American Conference of Governmental Industrial Hygienists, Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices, Cincinnati, Ohio.
  • 4. Borges, A.R., Francois, L.L., Becker, E.M., Vale, M.G.R., Welz, B. 2015. Method development for the determination of chromium and thallium in fertilizer samples using graphite furnace atomic absorption spectrometry and direct solid sample analysis. Microchemical Journal, 119, 169-175.
  • 5. Buser, M.C., Ingber, S.Z., Raines, N., Fowler, D. A., Scinicariello, F. 2016. Urinary and blood cadmium and lead and kidney function: NHANES 2007–2012. International journal of hygiene and environmental health, 219(3), 261-267.
  • 6. Chagnes, A. and Swiatowska, J. (Eds.). 2015. Lithium process chemistry: Resources, extraction, batteries, and recycling. Elsevier.
  • 7. Chen, H. Y., Li, A.J., Finlow, D.E. 2009. The lead and lead-acid battery industries during 2002 and 2007 in China. Journal of Power Sources, 191(1), 22-27.
  • 8. de Freitas, C.U., De Capitani, E.M., Gouveia, N., Simonetti, M.H., De Silva, M.R.D.P., Kira, C.S. et al. 2007. Lead exposure in an urban community: investigation of risk factors and assessment of the impact of lead abatement measures. Environmental Research, 103(3), 338-344.
  • 9. El Ati-Hellal, M., Hellal, F., Dachraoui, M., & Hedhili, A. 2007. Plackett–Burman designs in the pretreatment of macroalgae for Pb, Cr and Al determination by GF-AAS. Comptes Rendus Chimie, 10(9), 839-849.
  • 10. Farahat, F.M., Fenske, R.A., Olson, J.R., Galvin, K., Bonner, M.R., Rohlman, D.S. et al. 2010. Chlorpyrifos exposures in Egyptian cotton field workers. Neurotoxicology, 31(3), 297-304.
  • 11. Feng, Y., Huang, X., Sun, H., Liu, C., Zhang, B., Zhang, Z. et al. 2015. Framingham risk score modifies the effect of PM10 on heart rate variability. Science of the Total Environment, 523, 146-151.
  • 12. Fink, A. 2015. How to conduct surveys: A step-bystep guide. Sage Publications.
  • 13. Gottesfeld, P. and Pokhrel, A.K. 2011. Lead exposure in battery manufacturing and recycling in developing countries and among children in nearby communities. Journal of occupational and environmental hygiene, 8(9), 520-532.
  • 14. Gratz, E., Sa, Q., Apelian, D., Wang, Y. 2014. A closed loop process for recycling spent lithium ion batteries. Journal of Power Sources, 262, 255-262.
  • 15. Haefliger, P., Mathieu-Nolf, M., Lociciro, S., Ndiaye, C., Coly, M., Diouf, A. et al. 2009. Mass lead intoxication from informal used lead-acid battery recycling in Dakar, Senegal. Environmental Health Perspectives, 117(10), 1535-1540.
  • 16. IC Consultants Ltd.: Lead: The Facts. London: IC Consultants Ltd., 2001. pp. 65–71.
  • 17. International Lead and Zinc Study Group (ILZSG): “End Uses of Lead.” [Online] Available at http://www.ilzsg.org/static/enduses.aspx?from=2 (Accessed January 1, 2020)
  • 18. Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B.B., Beeregowda, K.N. 2014. Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary toxicology, 7(2), 60-72.
  • 19. Kosnett, M.J., Wedeen, R.P., Rothenberg, S.J., Hipkins, K.L., Materna, B.L., Schwartz, B.S. et al. 2006. Recommendations for medical management of adult lead exposure. Environmental health perspectives, 115(3), 463-471.
  • 20. Kurfürst, U. (Ed.). 2013. Solid sample analysis: direct and slurry sampling using GF-AAS and ETVICP. Springer Science & Business Media.
  • 21. Li, P., Lin, C., Cheng, H., Duan, X., Lei, K. 2015. Contamination and health risks of soil heavy metals around a lead/zinc smelter in southwestern China. Ecotoxicology and Environmental Safety, 113, 391-399.
  • 22. Lisbona, D. and Snee, T. 2011. A review of hazards associated with primary lithium and lithium-ion batteries. Process Safety and Environmental Protection, 89(6), 434-442.
  • 23. Mason, L.H., Harp, J.P., Han, D.Y. 2014. Pb neurotoxicity: neuropsychological effects of lead toxicity. BioMed research international, 2014.
  • 24. Matović, V., Buha, A., Ðukić-Ćosić, D., Bulat, Z. 2015. Insight into the oxidative stress induced by lead and/or cadmium in blood, liver and kidneys. Food and Chemical Toxicology, 78, 130-140.
  • 25. Matta G. and Gjyli L. 2016. Mercury, lead and arsenic: impact on environment and human health. Journal of chemical and Pharmaceutical Sciences, 9(2), 718-725.
  • 26. Monteith, J. and Unsworth, M. 2013. Principles of environmental physics: plants, animals, and the atmosphere. Academic Press.
  • 27. NJ DOH. 2010. Lead Inorganic. New Jersey Department of Health.
  • 28. OMEE 2010. Reference Dose for lead inorganic. Ontario Ministry of Environmental and Energy.
  • 29. Parks, D.H., Tyson, G.W., Hugenholtz, P., Beiko, R. G. 2014. STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics, 30(21), 3123-3124.
  • 30. Parzych, A. and Jonczak, J. 2014. Pine needles (Pinus sylvestris L.) as bioindicators in the assessment of urban environmental contamination with heavy metals. Journal of Ecological Engineering, 15(3).
  • 31. Rabinowitz, M.B., Wetherill, G.W., Kopple, J.D. 1976. Kinetic analysis of lead metabolism in healthy humans. The Journal of Clinical Investigation, 58(2), 260-270.
  • 32. Reyes, J.W. 2015. Lead exposure and behavior: effects on antisocial and risky behavior among children and adolescents. Economic Inquiry, 53(3), 1580-1605.
  • 33. Sanders, T., Liu, Y., Buchner, V., Tchounwou, P.B. 2009. Neurotoxic effects and biomarkers of lead exposure: a review. Reviews on environmental health, 24(1), 15-46.
  • 34. Santoso, M., Dwiana Lestiani, D., Hopke, P.K. 2013. Atmospheric black carbon in PM2. 5 in Indonesian cities. Journal of the Air & Waste Management Association, 63(9), 1022-1025.
  • 35. Savic, N., Racordon, D., Buchs, D., Gasic, B., Vernez, D. 2016. TREXMO: a translation tool to support the use of regulatory occupational exposure models. Annals of Occupational Hygiene, 60(8), 991-1008.
  • 36. Taha, G., Box, G.P., Cohen, D.D., & Stelcer, E. 2007. Black carbon measurement using laser integrating plate method. Aerosol Science and Technology, 41(3), 266-276.
  • 37. Vinceti, M., Grill, P., Malagoli, C., Filippini, T., Storani, S., Malavolti, M., Michalke, B. 2015. Selenium speciation in human serum and its implications for epidemiologic research: a cross-sectional study. Journal of trace elements in medicine and biology, 31, 1-10.
  • 38. Volchek, K., Thouin, G., Kuang, W., Li, K., Tezel, F.H., Brown, C.E. 2014. The release of lindane from contaminated building materials. Environmental Science and Pollution Research, 21(20), 11844-11855.
  • 39. Waste, F.H. 2018. Hazardous waste management.
  • 40. Zuberbier, T., Balke, M., Worm, M., Edenharter, G., Maurer, M. 2010. Epidemiology of urticaria: a representative cross‐sectional population survey. Clinical and Experimental Dermatology: Clinical dermatology, 35(8), 869-873.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-94bd72a4-c6db-4849-b9e1-541c4bf866d8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.