PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An experimental and theoretical approach for the carbon deposition problem during steam reforming of model biogas

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The conversion of biogas to electricity presents an attractive niche application for solid oxide fuel cells (SOFCs). A number of attempts have been made to use biogas as a fuel for high temperature fuel cell systems such as SOFCs. Biogas can be converted to a hydrogen-rich fuel in a reforming process which can use steam or carbon dioxide as the reforming agent. Conventionally, the reforming process is conducted at around 850◦C using several different catalysts depending on application. Biogas naturally contains the reforming agent, carbon dioxide, however, for typical biogas the content of carbon dioxide is insufficient to conduct the reforming process safely. Fore those cases, steam is added to prevent carbon deposition. Carbon formation occurs between the catalyst and the metal support, creating fibers which damage the catalytic property of the reactor. A number of papers have dealt with the problem of carbon deposition during both methane steam reforming and dry reforming. However, from the standpoint of solid oxide fuel cells, not every carbon-free condition is optimal for its operation. This paper treats this subject, explaining the mechanism of carbon formation during the steam reforming of biogas and using a numerical analysis to determine efficient and carbon-free working conditions.
Rocznik
Strony
273--284
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Energy and Fuels, Kraków, Poland
autor
  • AGH University of Science and Technology, Faculty of Energy and Fuels, Kraków, Poland
autor
  • AGH University of Science and Technology, Faculty of Energy and Fuels, Kraków, Poland
autor
  • Shibaura Institute of Technology, Graduate School of Engineering and Science, Fukasaku, Saitama, Japan
autor
  • Shibaura Institute of Technology, College of Systems Engineering and Science, Fukasaku, Saitama, Japan
Bibliografia
  • 1. Achenbach E., 1994, Three-dimensional and time-dependent simulation of a planar solid oxide fuel cell stack, Journal of Power Sources, 49, 1, 333-348.
  • 2. Achenbach E., Riensche E., 1994, Methane/steam reforming kinetics for solid oxide fuel cells, Journal of Power Sources, 52, 2, 283-288
  • 3. Assabumrungrat S., Laosiripojana N., Pavarajarn V., Sangtongkitcharoen W., Tangjitmatee W., Praserthdam P., 2005, Thermodynamic analysis of carbon formation in a solid oxide fuel cell with a direct internal reformer fuelled by methanol, Journal of Power Sources, 139, 1, 55-60
  • 4. Assabumrungrat S., Laosiripojana N., Piroonlerkgul P., 2006, Determination of the boundary of carbon formation for dry reforming of methane in a solid oxide fuel cell, Journal of Power Sources, 159, 2, 1274-1282
  • 5. Berman A., Karn R.K., Epstein M, 2005, Kinetics of steam reforming of methane on Ru/Al2O3 catalyst promoted with Mn oxides, Applied Catalysis A: General, 282, 1, 73-83
  • 6. Bradford M.C.J., Vannice M.A., 1996, Catalytic reforming of methane with carbon dioxide over nickel catalysts. II Reaction kinetics, Applied Catalysis A: General, 142, 1, 97-122
  • 7. Brus G., Komatsu Y.,Kimijima S., Szmyd J.S, 2012, An analysis of biogas reforming process on Ni/YSZ and Ni/SDC catalysts, International Journal of Thermodynamics, 15, 1, 43-51
  • 8. Claridge J.B., Green M.L.H., Tsang S.C., York A.P.E., Ashcroft A.T., Battle P.D., 1993, A study of carbon deposition on catalysts during the partial oxidation of methane to synthesis gas, Catalysis Letters, 22, 4, 299-305
  • 9. da Silva A.L., de Fraga Malfatti C., Moller I.L. ¨ , 2009, Thermodynamic analysis of ethanol steam reforming using Gibbs energy minimization method: a detailed study of the conditions of carbon deposition, International Journal of Hydrogen Energy, 34, 10, 4321-4330
  • 10. Effendi A., Hellgardt K., Zhang Z.G., Yoshida T., 2005, Optimising H2 production from model biogas via combined steam reforming and CO shift reactions, Fuel, 84, 7, 869-874
  • 11. Jiang Y., Virkar A.V., 2003, Fuel composition and diluent effect on gas transport and performance of anode-supported sofcs, Journal of the Electrochemical Society, 150, 7, A942-A951
  • 12. Kolbitsch P., Pfeifer C., Hofbauer H., 2008, Catalytic steam reforming of model biogas, Fuel, 87, 6, 701-706
  • 13. Murray M. L., Seymour E.H., Rogut J., 2008, Stakeholder perceptions towards the transition to a hydrogen economy in Poland, International Journal of Hydrogen Energy, 33, 1, 20-27
  • 14. Nishino T., Szmyd J.S., 2010, Numerical analysis of a cell-based indirect internal reforming tubular SOFC operating with biogas, Journal of Fuel Cell Science and Technology, 7, 5
  • 15. Osaki T., Horiuchi T., Suzuki K., Mori T., 1997, Catalyst performance of MoS2 and WS2 for the CO2-reforming of CH4 suppression of carbon deposition, Applied Catalysis A: General, 155, 2, 229-238
  • 16. Osaki T., Masuda H., Mori T., 1994, Intermediate hydrocarbon species for the CO2-CH4 reaction on supported Ni catalysts, Catalysis Letters, 29, 1/2, 33-37
  • 17. Penchini D., Cinti G., Discepoli G., Sisani E., Desideri U., 2013, Characterization of a 100W SOFC stack fed by carbon monoxide rich fuels, International Journal of Hydrogen Energy, 38, 525-531
  • 18. Sucipta M., Kimijima S., Kenjiro S., 2007, Performance analysis of the SOFC MGT hybrid system with gasified biomass fuel, Journal of Power Sources, 174, 1, 124-135
  • 19. Timmermann H., Sawady W., Campbell D., Weber A., Reimert R., Ivers-Tiff E., 2007, Coke formation in hydrocarbons-containing fuel gas and effects on SOFC degradation phenomena, ECS Transactions, 7, 1, 1429-1435
  • 20. Trimm D.L., 1997, Coke formation and minimisation during steam reforming reactions, Catalysis Today, 37, 3, 233-238
  • 21. Xu J., Zhou W., Li ., Wang J., Ma J., 2010, Biogas reforming for hydrogen production over a Ni-Co bimetallic catalyst: effect of operating conditions, International Journal of Hydrogen Energy, 35, 23, 13013-13020
  • 22. Yakabe H., Hishinuma M., Uratani M., Matsuzaki Y., Yasuda I., 2000, Evaluation and modeling of performance of anode-supported solid oxide fuel cell, Journal Of Power Sources, 86, 1, 423-431
  • 23. Yang K.L., Yang R.T., 1986, The accelerating and retarding effects of hydrogen on carbon deposition on metal surfaces, Carbon,
  • 24, 6, 687-693 24. York A.P.E., Xiao T.-C., Green M.L.H., Claridge J.B., 2007, Methane oxyforming for synthesis gas production, Catalysis Reviews, 49, 4, 511-560
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-94b5e568-8318-4f97-8eac-50e820cf8eab
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.