PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling and numerical simulation of eddy current sensors for electromagnetic characterization of fluids

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Modelowanie i symulacja numeryczna czujników prądów wirowych do charakterystyki elektromagnetycznej płynów
Języki publikacji
EN
Abstrakty
EN
This work aims to model a device enabling a useful and accurate electromagnetic characterization of fluids. The device developed is based on a non destructive testing (NDT) control technique evolving the eddy currents induced in the fluid to be characterized. The finite element method was used in the modeling to determine the conductivity of the fluid from the induced eddy current. In addition, an experimental device has been built. It consists of an absolute probe where the fluid control is made by determining its electrical conductivity by measuring the variations of the fluid impedance as a function of the applied voltage frequency. Good agreements are found between modeling results and experimental measurements. An inverse model that converges after only 7 iterations has been also proposed for the determination of the conductivity of fluids by the use of theoretical and experimental measurements.
PL
Niniejsza praca ma na celu zamodelowanie urządzenia umożliwiającego użyteczną i dokładną charakterystykę elektromagnetyczną płynów. Opracowane urządzenie opiera się na technice kontroli badań nieniszczących (NDT), która rozwija prądy wirowe indukowane w scharakteryzowanym płynie. W modelowaniu wykorzystano metodę elementów skończonych do wyznaczenia przewodności płynu z indukowanych prądów wirowych. Ponadto zbudowano eksperymentalne urządzenie. Składa się z sondy absolutnej, w której kontrola płynu odbywa się poprzez określenie jego przewodności elektrycznej poprzez pomiar zmian impedancji płynu w funkcji przyłożonej częstotliwości napięcia. Stwierdzono dobrą zgodność między wynikami modelowania a pomiarami eksperymentalnymi. Zaproponowano również model odwrotny, który zbiega się już po 7 iteracjach, do wyznaczania przewodnictwa płynów za pomocą pomiarów teoretycznych i eksperymentalnych.
Rocznik
Strony
88--92
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • LCDEP Laboratory, Electrical Engineering Faculty, University of Science and Technology Houari Boumediene, Algiers, Algeria
  • University Echahid Hamma Lakhdar – El-oued – BP 789 El-oued, Algeria
  • LCDEP Laboratory, Electrical Engineering Faculty, University of Science and Technology Houari Boumediene, Algiers, Algeria
autor
  • LCDEP Laboratory, Electrical Engineering Faculty, University of Science and Technology Houari Boumediene, Algiers, Algeria
  • University Ziane Achour of Djelfa, PO 3117, Algeria
Bibliografia
  • [1] Vincent Guihard, Cédric Patapy, Julien Sanahuja, Jean-Paul Balayssac, Frédéric Taillade, and Barthélémy Steck, Effective medium theories in electromagnetism for the prediction of water content in cement pastes, International Journal of Engineering Science, Volume 150, May 2020, 103273
  • [2] Xavier Dérobert, Géraldine Villain, Effect of water and chloride contents and carbonation on the electromagnetic characterization of concretes on the GPR frequency band through designs of experiment, NDT & E International, Volume 92, December 2017, Pages 187-198
  • [3] AnaMarta Paz, Nádia Castanheira, Mohammad Farzamian, Ma riaCatarina Paz, MariaConceição Gonçalves, Fernando A. Monteiro Santos, John Triantafilis, Prediction of soil salinity and sodicity using electromagnetic conductivity imaging, Geoderma, Volume 361, 1 March 2020, 114086
  • [4] R.P. Singh, S.E. Zorrilla, S.K. Vidyarthi, R. Cocker, K. Cronin, Dairy Plant Design, Construction and Operation, Encyclopedia of Dairy Sciences (Third edition) 2022, Pages 239-252
  • [5] S.A. Rankin, R.L. Bradley, G. Miller, K.B. Mildenhall, A 100- Year Review: A century of dairy processing advancements— Pasteurization, cleaning and sanitation, and sanitary equipment design, Journal of Dairy Science, Volume 100, Issue 12, December 2017, Pages 9903-9915
  • [6] S. Thiel, V. Seiß and M. Eichelbaum, Scanning electrochemical microscopy for the characterization of fuel cell components,2022 International Workshop on Impedance Spectroscopy (IWIS), Chemnitz, Germany, 2022, pp. 14-19, doi: 10.1109/IWIS57888.2022.9975128.
  • [7] Yueyue Du , Zhi Ying , Xiaoyuan Zheng , Binlin Dou , Guomin Cui, Correlating electrochemical biochar oxidation with electrolytes during biochar-assisted water electrolysis for hydrogen production, Fuel, Vol. 339, 2023, 126957
  • [8] Monjur Mourshed, Huy Quoc Nguyen, Bahman Shabani, Using electrical conductivity to determine particle sedimentation status of carbon-based slurry electrodes in electrochemical energy storage systems, Materials Science for Energy Technologies, Vol. 6 (2023) 290–300
  • [9] Xuan Guo, Qi Chen, HuaiWei Ni, Electrical conductivity of hydrous silicate melts and aqueous fluids: Measurement and applications, Sci. China Earth Sci. 59, 889–900 (2016). https://doi.org/10.1007/s11430-016-5267-y
  • [10] Hamid Mehaddene, Hassane Mohellebi, Azouaou Berkache, Eddy Currents Non Destructive Testing and Evaluation of Ferromagnetic Medium, Przegląd Elektrotechniczny, Vol. 95 No 2, 2019, pp.212-216, doi:10.15199/48.2019.02.26
  • [11] Daniela Gombarska , Milan Smetana, Wavelet based signal analysis of pulsed eddy current signals, Przegląd Elektrotechniczny (Electrical Review), Vol. 87 No 5, 2011, pp. 37-39
  • [12] Robert Wald, Advanced Classical Electromagnetism, Princeton University Press, 2022.
  • [13] J. Doumont-Fillon, ‘’ Control non destructif (CND)’’, Techniques de l’ingénieur, R 1400, Mesures mécaniques et dimensionnelles, 1996.
  • [14] Prabhakar H. Pathak; Robert J. Burkholder, "Maxwell's equations, constitutive relations, wave equation, and polarization, in Electromagnetic Radiation, Scattering, and Diffraction, IEEE, 2022, pp.1-51, doi: 10.1002/9781119810544.ch1.
  • [15] Mc. G. Warren, ‘’ Essais non destructifs, métaux et matériaux’’, édition Eyrolles , paris, 1967.
  • [16] Wittig, G. and H.-M. Thomas, « Design of a Pulsed Eddy-Current Test Equipment with Digital Signal Analysis, Eddy-Current Characterization of Materials and Structures », ASTM STP 722, George Bimbaum and George Free, Eds, American Society for Testing Materials, 1981.
  • [17] Mehran Mirzaei, Pavel Ripka , Vaclav Grim, An eddy current speed sensor with a novel configuration of longitudinal and transversal coils, Sensors and Actuators A: Physical, Volume 352, 2023, 114201
  • [18] Hagemaier D.J. « Eddy current impedance plane analysis ». Materials Evaluation, 41,1982, pp.211-218.
  • [19] G. Hrkac, T. Schrefl, M. Schabes, A combined vector and scalar potential method for 3D magnetic fields and transient Eddy current effects in recording head coils, Physica B: Condensed Matter, Volume 384, 2006, pp. 253-255
  • [20] A. Kameari, Three Dimensional Eddy Current Calculation Using Edge Elements for Magnetic Vector Potential, Applied Electromagnetics in Materials, 1989, pp. 225-236
  • [21] Ward, W.W. and J.C. Moulder, « Low Frequency Pulsed Eddy Currents for Deep Penetration ». Review of Progress in Quantitative Nondestructive Evaluation, Vol. 17. Plenum Press, New York, 1998.
  • [22] Etienne Guerber, Michel Benoit, Stephan T. Grilli, Clément Buvat, A fully nonlinear implicit model for wave interactions with submerged structures in forced or free motion, Engineering Analysis with Boundary Elements, Volume 36, Issue 7, July 2012, Pages 1151-1163
  • [23] L. Oukhellou, Paramétrisation et Classification des Signaux en Contrôle Non Destructif, Application à la Reconnaissance des Défauts de Rails par Courants de Foucault, Doctorat Thesis, Paris XI Orsay University, France, 1997.
  • [24] I. Dufour and D. Placko, An original approach to eddy current problems through a complex electrical image concept, IEEE Transactions on Magnetics, vol. 32, no. 2, pp. 348-365, 1996, doi: 10.1109/20.486519.
  • [25] Konstanty Marek Gawrylczyk, Fawwaz Alkhatib, A posteriori error estimators in finite element method for time and frequency domain, Przegląd Elektrotechniczny, vol 11, 2007, 31316
  • [26] Zejun Chen, Haiquan Zhao, Bias-compensated Adaptive Filter Algorithm under Minimum Error Entropy Criterion, IFAC-PapersOnLine Volume 52, Issue 24, 2019, Pages 93-97
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-94b3a0e4-333d-4ad9-bd30-e3b991bb4e1c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.