PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Application of Soil Amendments on the PAHs Level in the Fire-Affected Forest Soil

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Polycyclic aromatic hydrocarbons (PAHs) are introduced to the environment from anthropogenic and natural sources. The most significant natural source of PAH are wildfires and volcanic eruptions. The PAHs occurring in the soil mostly bind to the root system of plants. Phytodegradation, specifically rhizospheric degradation, can reduce the PAH levels in soil with the help of plants roots. A pot experiment was conducted to study the effect of application of soil amendments on the PAHs level in the burnt soil (BS). The aim of this study was to assess the effect of application of soil amendments (compost, biochar, and bentonite) on the PAHs level after performing experiment with two grass species (Lolium perenne, Festuca rubra). Biochar and compost turned out to be the most effective amendments, regardless of the used grass species. Phytomanaged BS without added amendments also demonstrated the potential for PAH dissipation, but only in the case of Festuca rubra. It has been proven that the application of soil amendments together with the test grass species induced important changes in the BS properties (alteration of soil pH with related change of Kow of individual PAHs; root system on which soil microorganisms thrive) which evoked an increased bioavailability of PAHs.
Słowa kluczowe
Rocznik
Strony
26--38
Opis fizyczny
Bibliogr. 61 poz., rys., tab.
Twórcy
  • Department of Applied and Landscape Ecology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
autor
  • Department of Plant Biology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
autor
  • Department of Applied and Landscape Ecology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
  • Department of Applied and Landscape Ecology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
  • Institute of Civil Engineering, Warsaw University of Life Sciences – SGGW, ul. Nowoursynowska 159, 02-776 Warsaw, Poland
Bibliografia
  • 1. Abdel-Shafy H.I., Mansour M.S.M. 2016. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Pet., 25(1), 107–123. https://doi.org/10.1016/j.ejpe.2015.03.011
  • 2. Abdullah S.R.S., Al-Baldawi I.A., Almansoory A.F., Purwanti I.F.,Al-Sbani N.H., Sharuddin S.S.N. 2020. Plant-assisted remediation of hydrocarbons in water and soil: Application, mechanisms, challenges and opportunities. Chemosphere, 247, 125932. https://doi.org/10.1016/j.chemosphere.2020.125932.
  • 3. Adugna G. 2018. A review on impact of compost on soil properties, water use and crop productivity. Res. J. Agric. Sci., 4(3), 93–104. https://doi.org/10.14662/ARJASR2016.010
  • 4. Agoston R. 2018. The effects of global climate change on fire service Human resource view. Procedia Eng., 211, 1–7. https://doi.org/10.1016/j.proeng.2017.12.001
  • 5. Alagić S.Č., Maluckov B.S., Radojičić V.B. 2015. How can plants manage polycyclic aromatic hydrocarbons? May these effects represent a useful tool for an effective soil remediation? A review. Clean Techn Environ Policy, 17, 597–614. https://doi.org/10.1007/s10098-014-0840-6
  • 6. ALS Global. Certificate of Accreditation. 2021 Available at: https://www.alsglobal.cz/media-cz/certificates/2021/13_2021_eng_whole_cai-pdf.pdf
  • 7. Aponte C., de Groot W.J., et al. 2016. Forest fires and climate change: causes, consequences and management options. Int. J. Wildland Fire, 25 (8), I-II. https://doi.org/10.1071/WFv25n8_FO
  • 8. Alexander M. 1995. How Toxic Are Toxic Chemicals in Soil? Environ. Sci. Technol., 29(11), 2713–2717. https://doi.org/10.1021/es00011a003
  • 9. Beesley L., Moreno-Jiménez E., Gomez-Eyles J.L. 2010. Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ. Pollut., 158(6), 2282–2287. https://doi.org/10.1016/j.envpol.2010.02.003
  • 10. Bodí M.B., Martin D.A., Balfour V.N., Santín C., Doerr S.H., Pereira P., Cerdà A., Mataix-Solera J. 2014. Wildland fire ash: Production, composition and eco-hydro-geomorphic effects. Earth-Science Reviews, 130, 103-127. https://doi.org/10.1016/j.earscirev.2013.12.007
  • 11. Bülent S. 2004. Soil organic matter, soil pH and soil nutrient dynamics in forest stands after fire. Conference: International Soil Congress on „Natural Resource Management for Sustainable Development”, Erzurum, Turkey, June 7-10, Available at: https://www.researchgate.net/publication/288828677_Soil_organic_matter_soil_pH_and_soil_nutrient_dynamics_in_forest_stands_after_fire
  • 12. Certini G. 2005. Effects of Fire on Properties of Forest Soils: A Review. Oecologia, 143(1), 1–10. https://doi.org/10.1007/s00442-004-1788-8.
  • 13. Centralni kompostarna. 2020. Produkty. Available online: https://www.centralnikompostarna.cz/24812-kompost-cerny-drak-organicke-hnojivo
  • 14. Chang B.V., Chang S.W., Yuan S.Y. 2003. Anaerobic degradation of polycyclic aromatic hydrocarbons in sludge. Adv Environ Res., 7(3), 623-628. https://doi.org/10.1016/S1093-0191(02)00047-3.
  • 15. Council of Ministers of the Environment. 2010. Canadian soil quality guidelines for the protection of environmental and human health: Carcinogenic and Other PAHs. In: Canadian environmental quality guidelines, 1999, Canadian Council of Ministers of the Environment, Winnipeg. Available at: https://ccme.ca/en/res/polycyclic-aromatic-hydrocarbons-2010-canadian-soil-quality-guidelines-for-the-protection-of-environmental-and-human-health-en.pdf
  • 16. Culek M., Grulich V., Laštůvka Z., Divíšek J. 2013. Biogeografické regiony České republiky. 1st ed, Masarykova univerzita: Brno, Czech Republic, 209–219. https://doi:10.5817/CZ.MUNI.M210-6693-2013.
  • 17. Chanda S., Mehendale H.M. 2005. Acenaphthene. 2nd ed, Editor(s): Philip Wexler, Encyclopedia of Toxicology, Elsevier, 11-13. https://doi.org/10.1016/B0-12-369400-0/00007-7
  • 18. De Bano L.F. 1991. The effect of fire on soil properties. In: Harvey, Alan E.; Neuenschwander, Leon F., compilers. Proceedings-management and productivity of western-montane forest soils; 1990 April 10-12; Boise, ID. Gen. Tech. Rep. INT-280. Ogden, UT: U.S. Department ofAgriculture, Forest Service, Intermountain Research Station, 151–156. Available online: https://www.fs.usda.gov/treesearch/pubs/42163.
  • 19. Desai A.M., Autenrieth R.L., Dimitriou-Christidis P., McDonald T.J. 2008. Biodegradation kinetics of select polycyclic aromatic hydrocarbon (PAH) mixtures by Sphingomonas paucimobilis EPA505. Biodegradation, 19, 223–233. https://doi.org/10.1007/s10532-007-9129-3.
  • 20. Desai J.D., Banat I.M. 1997. Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev., 61(1), 47–64. https://doi.org/10.1128/mmbr.61.1.47-64.1997.
  • 21. Doerr S.H., Santín C. 2016. Global trends in wildfire and its impacts: perceptions versus realities in a changing world. Philos. Trans. R. Soc. Lond., B, Biol. Sci., 371, 20150345. https://royalsocietypublishing.org/doi/10.1098/rstb.2015.0345
  • 22. Dudaite J., Pereira P., Baltrėnaitė-Gedienė E. 2011. Temperature effects on ash colour of forest litter. Moksl. Liet. ateitis., 3, 18-23. https://doi.org/10.3846/mla.2011.081
  • 23. Eskandary S., Tahmourespour A., Hoodaji M., Abdollahi A. 2017. The synergistic use of plant and isolated bacteria to clean up polycyclic aromatic hydrocarbons from contaminated soil. J. environ. health sci., 15(1), 1–8. https://doi.org/10.1186/s40201-017-0274-2
  • 24. Faboya O.L., Sojinu S.O., Oguntuase B.J., Sonibare O.O. 2020. Impact of forest fires on polycyclic aromatic hydrocarbon concentrations and stable carbon isotope compositions in burnt soils from tropical forest, Nigeria. Scientific African., 8, e00331. https://doi.org/10.1016/j.sciaf.2020.e00331
  • 25. Ferraro A., Massini G., Valentina Mazzurco Miritana V.M., Panico A., Pontoni L., Race M., Rosa S., Signorini A., Fabbricino M., Pirozzi F. 2021. Bioaugmentation strategy to enhance polycyclic aromatic hydrocarbons anaerobic biodegradation in contaminated soils. Chemosphere, 275. https://doi.org/10.1016/j.chemosphere.2021.130091
  • 26. Goldblum D., Lesley R.S. 2009. Throughfall in pH in a Mixed Deciduous-Coniferous Forest, Ontario, Canada: The Effect of Overstory Species Composition. The Michigan Botanist., 48(3), 65-71. http://hdl.handle.net/2027/spo.0497763.0048.301
  • 27. Czaban J., Siebielec G. 2013. Effects of Bentonite on Sandy Soil Chemistry in a Long-Term Plot Experiment (II). Effect on pH, CEC, and Macro- and Micronutrients. Pol. J. Environ. Stud., 22, 1669–1676.
  • 28. Fernandez-Anez N., Krasovskiy A., Müller M., et al. 2021. Current Wildland Fire Patterns and Challenges in Europe: A Synthesis of National Perspectives. Air, Soil and Water Research. https://doi:10.1177/11786221211028185.
  • 29. Girardin V., Grung M., Meland S. 2020. Polycyclic aromatic hydrocarbons: bioaccumulation in dragonfly nymphs (Anisoptera), and determination of alkylated forms in sediment for an improved environmental assessment. Scientific Reports, 10, 10958. https://doi.org/10.1038/s41598-020-67355-1
  • 30. Huang H., Ye L. 2020. Chapter 9 - Biological technologies for cHRPs and risk control, Editor(s): Hongqiang Ren, Xuxiang Zhang, High-Risk Pollutants in Wastewater. Elsevier, 209-236. https://doi.org/10.1016/B978-0-12-816448-8.00009-5.
  • 31. Johnsen A.R., Wick L.Y., Harms H. 2005. Principles of microbial PAH-degradation in soil. Environmental Pollution, 133(1), 71-84. https://doi.org/10.1016/j.envpol.2004.04.015
  • 32. Kukavica B., Quartacci M.F., Veljovic-Jovanovic S., Navari-Izzo F. 2007. Lipid composition of pea (Pisum sativum L.) and maize (Zea mays L.) root plasma membrane and membrane-bound peroxidase and superoxide dismutase. Arch. Biol. Sci., 59(4), 295–302. https://doi.org/10.2298/ABS0704295K.
  • 33. Lamichhane S., Krishna K.C.B., Sarukkalige, R. 2016. Polycyclic aromatic hydrocarbons (PAHs) removal by sorption: A review. Chemosphere, 148, 336-353. https://doi.org/10.1016/j.chemosphere.2016.01.036
  • 34. Martínez Barroso P., Vaverková M.D. 2020. Fire Effects on Soils – A Pilot Scale Study on the Soils Affected by Wildfires in the Czech Republic. Journal of Ecological Engineering, 21(6), 248-256. https://doi.org/10.12911/22998993/123471.
  • 35. Menzie C.A, Potocki B.B., Santodonato J. 1992. Exposure to carcinogenic PAHs in the environment. Environ. Sci. Technol., 26, 278–1284. https://doi:10.1021/es00031a002
  • 36. Mi J., Gregorich E.G., Xu S., McLaughlin N.B., Ma B., Liu J. 2017. Effect of bentonite amendment on soil hydraulic parameters and millet crop performance in a semi-arid region. Field Crops Res., 212, 107-114. https://doi.org/10.1016/j.fcr.2017.07.009
  • 37. Nayebzadeh M., Vahedpour M. 2017. A Review on Reactions of Polycyclic Aromatic Hydrocarbons with the Most Abundant Atmospheric Chemical Fragments: Theoretical and Experimental Data. Progress in Reaction Kinetics and Mechanism., 201-220. https://doi.org/10.3184/146867817X14821527549293
  • 38. Patel A.B., Shaik S., Jain K.R., Desai C., Madamwar D. 2020. Polycyclic Aromatic Hydrocarbons: Sources, Toxicity, and Remediation Approaches. Frontiers in Microbiology, 11, 2675. https://doi.org/10.3389/fmicb.2020.562813
  • 39. Pereira P., Francos M., Brevik E.C., Ubeda X., Bogunovic I. 2018. Post-fire soil management. Curr Opin Environ Sci Health, 5, 26–32. https://doi.org/10.1016/j.coesh.2018.04.002
  • 40. Pladias. Database of the Czech Flora and Vegetation. Department of Botany and Zoology Faculty of Science Masaryk University, 2018. Available online: https://pladi as.cz/en/
  • 41. Prauhel. 2020. Výroba. Available online: http://prauhel.cz/prauhel/
  • 42. Radziemska M., Gusiatin Z., Bilgin A. 2017. Potential of using immobilizing agents in aided phytostabilization on simulated contamination of soil with lead. Ecological Engineering, 102, 490-500. https://doi.org/10.1016/j.ecoleng.2017.02.028
  • 43. Raudonytė-Svirbutavičienė E., Stakėnienė R., Jokšas K., Valiulis D., Byčenkienė S., Žarkov A. 2022. Distribution of polycyclic aromatic hydrocarbons and heavy metals in soil following a large tire fire incident: A case study. Chemosphere, 286(1), 131556. https://doi.org/10.1016/j.chemosphere.2021.131556
  • 44. Ren K., Wei Y., Li J., Han C., Deng Y., Su G. 2021. Polycyclic aromatic hydrocarbons (PAHs) and their derivatives (oxygenated PAHs, azaarenes, and sulfur / oxygen-containing heterocyclic PAHs) in surface soils from a typical city, south China. Chemosphere, 283, 131190. https://doi.org/10.1016/j.chemosphere.2021.131190
  • 45. Roslund M.I., Grönroos M., Rantalainen A.L., Jumpponen A., Romantschuk M., Parajuli A., Hyöty H., Laitinen O., Sinkkonen A. 2018. Half-lives of PAHs and temporal microbiota changes in commonly used urban landscaping materials. Peer J., 6, e4508. https://doi.org/10.7717/peerj.4508
  • 46. Schreiberová M., Vlasáková L., Vlček O., Šmejdířová J., Horálek J., Bieser J. 2020. Benzo[a] pyrene in the Ambient Air in the Czech Republic: Emission Sources, Current and Long-Term Monitoring Analysis and Human Exposure. Atmosphere, 11(9), 955. https://doi.org/10.3390/atmos11090955.
  • 47. Scotter G. 1963. Effects of forest fires on soil properties in northern Saskatchewan. For. Chron., 39, 412–421. https://doi.org/10.5558/tfc39412-4
  • 48. Straube W.L., Nestler C.C., Hansen L.D., Ringleberg D., Pritchard P.H., Jones-Meehan J. 2003. Remediation of Polyaromatic Hydrocarbons (PAHs) through Landfarming with Biostimulation and Bioaugmentation. Acta Biotechnol., 23, 179-196. https://doi.org/10.1002/abio.200390025
  • 49. Tamer M.S., Refaie K.M., Sherif A.E., Eid M.A.M. 2019. Biochar application in alkaline soil and its effect on soil and plant. Acta Agric. Slov., 114, 85–96. http://dx.doi.org/10.14720/aas.2019.114.1.10
  • 50. Ter Braak C.J.F., Šmilauer P. 2012. Canoco reference manual and user’s guide: software for ordination (version 5.0). Microcomputer Power: Ithaca, USA, 496.
  • 51. Terzano R., Rascio I., Allegretta I., Porfido C., Spagnuolo M., Khanghahi M.Y., Crecchio C., Sake- llariadou, F., Gattullo, C.E. 2021. Fire effects on the distribution and bioavailability of potentially toxic elements (PTEs) in agricultural soils. Chemosphere, 281, 130752. https://doi.org/10.1016/j.chemosphere.2021.130752.
  • 52. Tsai W.T. 2007. Environmental risk assessment of hydrofluoropolyethers (HFPEs), Journal of Hazardous Materials, 139(2), 185-192. https://doi.org/10.1016/j.jhazmat.2006.10.025.
  • 53. Tsibart A.S., Gennadiev A., Koshovskii T., Watts A.C. 2014. Polycyclic aromatic hydrocarbons in post-fire soils of drained peatlands in western Meshchera (Moscow region, Russia). Solid Earth, 5(2), 1305–1317. https://doi.org/10.5194/se-5-1305-2014
  • 54. United States Environmental Protection Agency. 2021. IRIS Assessments. Available online: https://iris.epa.gov/AtoZ/
  • 55. Wang Z., Yang C., Brown C., Hollebone B., Landriault M. 2008. A case study: distinguishing pyrogenic hydrocarbons from petrogenic hydrocarbons. Int. Oil Spill Conf. Proc., 1, 311–320. https://doi.org/10.7901/2169-3358-2008-1-311
  • 56. Vergnoux A., Malleret L., Asia L., Doumenq P., Theraulaz F. 2011. Impact of forest fires on PAH level and distribution in soils. Environ Res., 111(2), 193–198. https://doi.org/10.1016/j.envres.2010.01.008
  • 57. Wei S., Pan S. 2010. Phytoremediation for soils contaminated by phenanthrene and pyrene with multiple plant species. J. Soils Sediments., 10(5), 886–894. https://doi.org/10.1007/s11368-010-0216-4
  • 58. Yang Y., et al. 2015. Long-term changes in soil pH across major forest ecosystems in China. Geophys. Res. Lett., 42, 933-940. https://doi.org/10.1002/2014GL062575
  • 59. Zelinkova Z., Wenzl T. 2015. The Occurrence of 16 EPA PAHs in Food – A Review. Polycycl Aromat Compd., 35(2–4), 248–284. https://doi.org/10.1080/10406638.2014.918550
  • 60. Zhang M., Riaz M., Zhang L., El-desouki Z., Jiang C. 2019. Biochar Induces Changes to Basic Soil Properties and Bacterial Communities of Different Soils to Varying Degrees at 25 mm Rainfall: More Effective on Acidic Soils. Frontiers in Microbiology, 10. https://doi.org/10.3389/fmicb.2019.01321
  • 61. Zhou M., Li Q., Wang X., Huang Q., Cang L. 2022. Electrokinetic combined peroxymonosulfate (PMS) remediation of PAH contaminated soil under different enhance methods. Chemosphere, 286(1), 131595. https://doi.org/10.1016/j.chemosphere.2021.131595
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-94b0c6e6-fe8c-49fc-a800-a81476fdc4ca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.