Identyfikatory
Warianty tytułu
Multilayered polymer films obtained by means of layer-by-layer (LbL) method : evolution and applications
Języki publikacji
Abstrakty
The production of varied materials with nanoscale precision requires both suitable components and a right method. In the past two decades, layer-by-layer (LbL) assembly has been proven to be a convenient and versatile technique for fabrication of functional films. The LbL method enables obtaining systems composed of a few or even hundreds layers of beforehand chosen substances, which are characterized by a thickness ranging from nano- to micrometers. The building blocks of LbL assembly include, but are not limited to, synthetic polymers, polymeric microgels, biomacromolecules, (nano)particles, dendritic molecules, and complexes of these species [1]. This method involves simple alternative adsorption of oppositely charged polyelectrolytes on supporting materials [2]. The LbL assembly can be driven by multiple weak interactions, including electrostatic interactions, hydrogen-bonds, halogen-bonds, coordination bonds, charge-transfer interactions, biospecific interactions (e.g., sugar–lectin interactions), cation–dipole interactions, and the combined interaction of the above forces, etc. The multilayered composite films fabricated by means of the LbL technique have generated much interest among researchers worldwide due to the simplicity of the whole process by which they are produced and their numerous applications such as antireflection coatings, superhydrophobic surfaces, electrochromic devices, biosensors, cell adhesion or resistance coatings, drug delivery systems, proton exchange membranes, solar-energy conversion devices, and separation membranes [3]. In this review the evolution of the LbL method and the applications of the multilayered polymer films were discussed.
Wydawca
Czasopismo
Rocznik
Tom
Strony
897--918
Opis fizyczny
Bibliogr. 63 poz., rys.
Twórcy
autor
- Wydział Chemii Uniwersytetu Jagiellońskiego ul. R. Ingardena 3, 30-060 Kraków
Bibliografia
- [1] Y. Li, X. Wang, J. Sun, Chem. Soc. Rev., 2012, 41, 5998.
- [2] P.K. Deshmukh I in., Journal of Controlled Release, 2013, 166, 294.
- [3] G. Decher, J. Schlenoff , Multilayer Thin Films, Wiley-VCH, Weinheim, druga edycja, 2012.
- [4] R.K. Iler, J. Colloid Interface Sci., 1966, 21, 569.
- [5] J.J. Kirkland, Anal. Chem., 1965, 37, 1458.
- [6] Opatentowany przez H. E. Bergna i J. J. Kirklanda w 1984.
- [7] Opatentowany przez J. J. Kirklanda w 1970.
- [8] P. Fromherz, [w:] Life Sciences, W. Baumeister, W. Vogell (Red.), Springer, Berlin, 1980, str. 338.
- [9] C.G. Gölander, H. Arwin, J.C. Eriksson, I. Lundstrom, R. Larsson, Colloids Surf., 1982, 5, 1.
- [10] G. Decher, J.-D. Hong, Makromol. Chem., Macromol. Symp., 1991, 46, 321.
- [11] G. Decher, J.D. Hong, Ber. Bunsen.-Ges. Phys. Chem., 1991, 95, 1430.
- [12] G. Decher, J.D. Hong, J. Schmitt, Thin Solid Films, 1992, 210, 831.
- [13] Y. Lvov, G. Decher, H. Möhwald, Langmuir, 1993, 9, 481.
- [14] J. Schmitt, T. Grünewald, G. Decher, P. S. Pershan, K. Kjaer, M. Lösche, Macromolecules, 1993, 26, 7058.
- [15] P. Berndt, K. Kurihara, T. Kunitake, Langmuir, 1992, 8, 2486.
- [16] E.R. Kleinfeld, G.S. Ferguson, Science, 1994, 265, 370.
- [17] Y. Lvov, K. Ariga, I. Ichinose, T. Kunitake, Langmuir, 1996, 12, 3038.
- [18] N.A. Kotov, I. Dékány, J.H. Fendler, J. Phys. Chem., 1995, 99, 13065.
- [19] M. Gao, X. Zhang, B. Yang, J. Shen, J. Chem. Soc., Chem. Commun., 1994, 2229.
- [20] K. Ariga, Y. Lvov, M. Onda, I. Ichinose, T. Kunitake, Chem. Lett., 1997, 125.
- [21] Y. Lvov, K. Ariga, M. Onda, I. Ichinose, T. Kunitake, Langmuir, 1997, 13, 6195.
- [22] A.C. Fou, M. F. Rubner, Macromolecules, 1995, 28, 7115.
- [23] M. Ferreira, M. F. Rubner, Macromolecules, 1995, 28, 7107.
- [24] G. Decher, Science, 1997, 277, 1232.
- [25] F. Caruso, D.N. Furlong, K. Ariga, I. Ichinose, T. Kunitake, Langmuir, 1998, 14, 4559.
- [26] G. Ladam, P. Schaad, J.C. Voegel, P. Schaaf, G. Decher, F. Cuisinier, Langmuir, 2000, 16, 1249.
- [27] G.B. Sukhorukov, E. Donath, S. Davis, H. Lichtenfeld, F. Caruso, V.I. Popov, H. Möhwald, Polym. Adv. Technol., 1998, 9, 759.
- [28] G.B. Sukhorukov, M. Brumen, E. Donath, H. Möhwald, J. Phys. Chem. B, 1999, 103, 6434.
- [29] B.G. De Geest, G.B. Sukhorukov, H. Möhwald, Expert Opin. Drug Delivery, 2009, 6, 613.
- [30] P.Y. Vuillaume, K. Glinel, A.M. Jonas, A. Laschewsky, Chem. Mater., 2003, 15, 3625.
- [31] W.B. Stockton, M. F. Rubner, Macromolecules, 1997, 30, 2717.
- [32] L. Wang, Z. Wang, X. Zhang, J. Shen, L. Chi, H. Fuchs, Macromol. Rapid Commun., 1997, 18, 509.
- [33] J.F. Quinn, A.P.R. Johnston, G.K. Such, A.N. Zelikin, F. Caruso, Chem. Soc. Rev., 2007, 36, 707.
- [34] H. Xiong, M. Cheng, Z. Zhou, X. Zhang, J. Shen, Adv. Mater., 1998, 10, 529.
- [35] Y. Shimazaki, M. Mitsuishi, S. Ito, M. Yamamoto, Langmuir, 1997, 13, 1385.
- [36] D.E. Bergbreiter, K.-S. Liao, Soft Matter, 2009, 5, 23.
- [37] Y. Wang, L. Hosta-Rigau, H. Lomas, F. Caruso, Phys. Chem. Chem. Phys., 2011, 13, 4782.
- [38] G. Rydzek, P. Schaaf, J.-C. Voegel, L. Jierry, F. Boulmedais, Soft Matter, 2012, 8, 9738.
- [39] A. Laschewsky, E. Wischerhoff, P. Bertrand, A. Delcorte, Macromol. Chem. Phys., 1997, 198, 3239.
- [40] J. Chen, W. Cao, Chem. Commun., 1999, 1711.
- [41] P. Tengvall, E. Jansson, A. Askendal, P. Thomsen, C. Gretzer, Colloids Surf., B, 2003, 28, 261.
- [42] D. Beyer, T. M. Bohanon, W. Knoll, H. Ringsdorf, G. Elender, E. Sackmann, Langmuir, 1996, 12, 2514.
- [43] G. Rydzek, J.-S. Thomann, N.B. Ameur, L. Jierry, P. Mésini, A. Ponche, C. Contal, A.E. El Haitami, J.-C. Voegel, B. Senger, P. Schaaf, B. Frisch, F. Boulmedais, Langmuir, 2010, 26, 2816.
- [44] H. Ejima, J.J. Richardson, K. Liang, J.P. Best, M.P. van Koeverden, G.K. Such, J. Cui, F. Caruso, Science, 2013, 341, 154.
- [45] T.C. Wang, R.E. Cohen, M.F. Rubner, Adv. Mater., 2002, 14, 1534.
- [46] J. Cho, K. Char, J.-D. Hong, K.-B. Lee, Adv. Mater., 2001, 13, 1076.
- [47] P.A. Chiarelli, M.S. Johal, J.L. Casson, J.B. Roberts, J.M. Robinson, H.-L. Wang, Adv. Mater., 2001, 13, 1167.
- [48] J. Seo, J.L. Lutkenhaus, J. Kim, P.T. Hammond, K. Char, Langmuir, 2008, 24, 7995.
- [49] J.B. Schlenoff, S.T. Dubas, T. Farhat, Langmuir, 2000, 16, 9968.
- [50] C.H. Porcel, A. Izquierdo, V. Ball, G. Decher, J.-C. Voegel, P. Schaaf, Langmuir, 2005, 21, 800.
- [51] A. Izquierdo, S.S. Ono, J.-C. Voegel, P. Schaaf, G. Decher, Langmuir, 2005, 21, 7558.
- [52] C. Jiang, X. Wang, R. Gunawidjaja, Y.-H. Lin, M.K. Gupta, D.L. Kaplan, R.R. Naik, V.V. Tsukruk, Adv. Funct. Mater., 2007, 17, 2229.
- [53] Y. Ma, J. Sun, J. Shen, Chem. Mater., 2007, 19, 5058.
- [54] Y. Ma, J. Sun, Chem. Mater., 2009, 21, 898.
- [55] L. Shen, J. Fu, K. Fu, C. Picart, J. Ji, Langmuir, 2010, 26, 16634.
- [56] Y. Ma, Y. Zhang, B. Wu, W. Sun, Z. Li, J. Sun, Angew. Chem., Int. Ed., 2011, 50, 6254.
- [57] B.J. Blaiszik, S.L.B. Kramer, S.C. Olugebefola, J.S. Moore, N.R. Sottos, S.R. White, Annu. Rev. Mater. Res., 2010, 40, 179.
- [58] Y. Li, L. Li, J. Sun, Angew. Chem., Int. Ed., 2010, 49, 6129.
- [59] X. Wang, F. Liu, X. Zheng, J. Sun, Angew. Chem., Int. Ed., 2011, 50, 11378.
- [60] Z. Tang, N.A. Kotov, S. Magonov, B. Ozturk, Nat. Mater., 2003, 2, 413.
- [61] X. Liu, L. Zhou, F. Liu, M. Ji, W. Tang, M. Pang, J. Sun, J. Mater. Chem., 2010, 20, 7721.
- [62] Q. Ji, I. Honma, S.-M. Paek, M. Akada, J.P. Hill, A. Vinu, K. Ariga, Angew. Chem., Int. Ed. 2010, 49, 9737.
- [63] K. Ariga i in., Chem. Lett., 2014, 43, 36.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-94af5a1e-cc41-48b6-8605-35f6d5199e3a