Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The consumption of contaminated natural pastures with highly dangerous and toxic heavy metals such as cadmium (Cd) and lead (Pb) by Andean camelids could cause harmful effects on the health of people exposed via consumption of contaminated alpaca meat. The concentration of Cd, Pb and Zn in the soil-plant-alpaca system was determined and the potential health risk associated with the intake of alpaca meat was evaluated. Soil and grass samples were collected in grazing areas of the South American camelid, and in the Municipal Slaughterhouse of Huancavelica, 30 samples of alpaca pectoral muscle were collected. The concentrations of Cd in the soil, grass and alpaca muscle exceeded the threshold values of national and international standards. The bioaccumulation factor values of the three elements studied was less than 1, Cd was the element with the highest bioavailability and mobility in the soil-plant-alpaca muscle system. The mean concentration of Cd in muscle was 0.335 ± 0.088 mg/kg which exceeded the maximum level allowed by the FAO/WHO and the European Commission, the concentration of Pb and Zn did not exceed the regulated limits. No significant differences were detected in accumulation according to sex. The non-carcinogenic hazard index (HI) values for the studied metals indicated that there is no adverse health risk (HI < 1) for children and adults from alpaca meat intake, but they could experience carcinogenic risk from prolonged exposure to Cd, and for exceeding the 1×10–4 limit threshold. It is recommended to conduct further studies on the accumulation of potentially toxic elements in alpaca tissues in order to determine the possible total risk of heavy metals in consumer’s health.
Czasopismo
Rocznik
Tom
Strony
40--52
Opis fizyczny
Bibliogr. 78 poz., rys., tab.
Twórcy
autor
- Facultad de Ciencias Forestales y del Ambiente, Universidad Nacional del Centro del Perú, Av. Mariscal Castilla N° 3909-4089, Huancayo, Perú
autor
- Facultad de Ciencias Forestales y del Ambiente, Universidad Nacional del Centro del Perú, Av. Mariscal Castilla N° 3909-4089, Huancayo, Perú
autor
- Facultad de Medicina Humana, Universidad Nacional del Centro del Perú, Av. Mariscal Castilla N° 3909-4089, Huancayo, Perú
autor
- Universidad Continental, Av. San Carlos 1980, Huancayo, Perú
autor
- Facultad de Enfermería, Universidad Nacional del Centro del Perú, Av. Mariscal Castilla N° 3909-4089, Huancayo, Perú
autor
- Facultad de Ciencias Aplicadas, Universidad Nacional del Centro del Perú, Av. Mariscal Castilla N° 3909-4089, Huancayo, Perú
Bibliografia
- 1. Abah J., Mashebe P., Onjefu SA. 2017. Assessment of heavy metals pollution status of the pasture grass around Katima Mulilo Municipal Solid Wastes Dumpsite, Namibia. International Journal of Environmental Science and Development, 8(5), 372–377. https://doi.org/10.18178/ijesd.2017.8.5.980
- 2. Ali H., Khan E. 2018. Trophic transfer, bioaccumulation and biomagnification of non-essential hazardous heavy metals and metalloids in food chains/ webs – concepts and implications for wildlife and human health. Human and Ecological Risk Assessment, 25(6), 1353–1376. https://doi.org/10.1080/10807039.2018.1469398
- 3. Ali H., Khan E., Ilahi I. 2019. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry, 2019, 1–14. https://doi.org/10.1155/2019/6730305
- 4. Anandkumar A., Li J., Prabakaran K., Xi Jia Z., Leng Z., Nagarajan R., Du D. 2020. Accumulation of toxic elements in an invasive crayfish species (Procambarus clarkii) and its health risk assessment to humans. Journal of Food Composition and Analysis, 88, 103449. https://doi.org/10.1016/j.jfca.2020.103449
- 5. Asli M., Azizzadeh M., Moghaddamjafari A., Mohsenzadeh M. 2019. Copper, iron, manganese, zinc, cobalt, arsenic, cadmium, chrome, and lead concentrations in liver and muscle in iranian camel (Camelus dromedarius). Biological Trace Element Research, 194, 390–400. https://doi.org/10.1007/s12011–019–01788–2
- 6. ATSDR. 2005. Toxicological profile for zinc. Atlanta, Georgia: Agency for Toxic Substances and Disease Registry. Retrieved from https://www.atsdr.cdc.gov/toxprofiles/tp60.pdf
- 7. ATSDR. 2012. Toxicological profile for cadmium. Atlanta, Georgia: Agency for Toxic Substances and Disease Registry. Retrieved from https://www.atsdr.cdc.gov/toxprofiles/tp5.pdf
- 8. ATSDR. 2020. Toxicological profile for lead. Atlanta, Georgia: Agency for Toxic Substances and Disease Registry. https://doi.org/10.1201/9781420061888_ch106
- 9. Bąkowska M., Pilarczyk B., Tomza-Marciniak A., Udała J., Pilarczyk R. 2016. The bioaccumulation of lead in the organs of roe deer (Capreolus capreolus L.), red deer (Cervus elaphus L.), and wild boar (Sus scrofa L.) from Poland. Environmental Science and Pollution Research, 23(14), 14373–14382. https://doi.org/10.1007/s11356–016–6605–5
- 10. Barath Kumar S., Padhi RK., Satpathy KK. 2019. Trace metal distribution in crab organs and human health risk assessment on consumption of crabs collected from coastal water of South East coast of India. Marine Pollution Bulletin, 141(February), 273–282. https://doi.org/10.1016/j.marpolbul.2019.02.022
- 11. Baydan E., Kanbur M., Arslanbaş E., Gönül Aydin F., Gürbüz,S., Yasin Tekeli M. 2017. Contaminants in animal products. In Livestock Science (pp. 131–152). https://doi.org/http://dx.doi.org/10.5772/67064
- 12. Bortey-Sam N., Nakayama SMM., Ikenaka Y., Akoto O., Baidoo E., Yohannes YB., … Ishizuka M. 2015. Human health risks from metals and metalloid via consumption of food animals near gold mines in Tarkwa, Ghana: estimation of the daily intakes and target hazard quotients (THQs). Ecotoxicology and Enviromental Safety, 111(160–167). https://doi.org/http://hdl.handle.net/2115/57933
- 13. CCME. 2007. Canadian soil quality guidelines for the protection of environmental and human health. Canadá: Canadian Council of Ministers of the Environment. https://doi.org/10.1177/004947559702700223
- 14. Chen H., Teng Y., Lu S., Wang Y., Wang J. 2015. Contamination features and health risk of soil heavy metals in China. Science of the Total Environment, 512–513, 143–153. https://doi.org/10.1016/j.scitotenv.2015.01.025
- 15. Chijioke NO., Uddin Khandaker M., Tikpangi KM., Bradley DA. 2020. Metal uptake in chicken giblets and human health implications. Journal of Food Composition and Analysis, 85, 103332. https://doi.org/10.1016/j.jfca.2019.103332
- 16. Cristofanelli S., Antonini M., Torres D., Polidori P., Renieri C. 2004. Meat and carcass quality from Peruvian llama (Lama glama) and alpaca (Lama pacos). Meat Science, 66(3), 589–593. https://doi.org/10.1016/S0309–1740(03)00174–8 [in spanish]
- 17. Cui Y. J., Zhu YG., Zhai RH., Chen DY., Huang YZ., Qiu Y., Liang JZ. 2004. Transfer of metals from soil to vegetables in an area near a smelterin Nanning, China. Environment International, 30(6), 785–791. https://doi.org/10.1016/j.envint.2004.01.003
- 18. Darwish WS., Chiba H., Elhelaly AE., Hui SP. 2019. Estimation of cadmium content in Egyptian food-stuffs: health risk assessment, biological responses of human HepG2 cells to food-relevant concentrations of cadmium, and protection trials using rosmarinic and ascorbic acids. Environmental Science and Pollution Research, 26(15), 15443–15457. https://doi.org/10.1007/s11356–019–04852–5
- 19. DESCOSUR. 2017 Camelid meat. Arequipa, Peru: Center for Studies and Promotion of Southern Development. Retrieved from http://www.descosur.org.pe/wp-content/uploads/2017/11/Carne_camelidos.pdf [in spanish]
- 20. Djedjibegovic J., Marjanovic A., Tahirovic D., Caklovica K., Turalic A., Lugusic A., … Caklovica F. 2020. Heavy metals in commercial fish and seafood products and risk assessment in adult population in Bosnia and Herzegovina. Scientific Reports, 10, 13238. https://doi.org/10.1038/s41598–020–70205–9
- 21. El Bayomi RM., Darwish WS., Elshahat SSM., Hafez AE. 2018. Human health risk assessment of heavy metals and trace elements residues in poultry meat retailed in Sharkia Governorate, Egypt. Slovenian Veterinary Research, 55(Suppl 20), 211–219. https://doi.org/10.26873/SVR-647–2018
- 22. European Commission. 2006a. Commission Regulation (EC) No 118/2006 of 19 december 2006. Setting maximum levels for certain contaminants in foodstuffs. European Union. Retrieved from https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32006R1881&from=EN
- 23. European Commission. 2006b. Directive 2002/32/EC of the Europen parliament and of the council – on undesirable substances in animal feed. Official Journal of the European Committee. Retrieved from https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02002L0032–20131227&from=EN
- 24. FAO/WHO. 1982. Evaluation of certain food additives and contaminants. Food and Agriculture Organization of the United Nations and World Health Organization. WHO Technical Report Series 683. Geneva, Rome. Retrieved from https://apps.who.int/iris/handle/10665/41546
- 25. FAO/WHO. 2011. Evaluation of certain food additives and contaminants. Food and Agriculture Organization of the United Nations and World Health Organization. WHO Technical Report Series 960.
- 26. FAO/WHO. 2015. General standard for contaminants and toxins in food and feed (Codex Stan 193–1995). Food and Agricultural Organization of the United Nations and World Health Organization. Retrieved from http://www.fao.xn--orgcxs_193e_2015-cz6i
- 27. FAO. 1983. Compilation of legal limits for hazardous substances in fish and fishery products. Rome.
- 28. FAO. 2005. Development of products with alpaca meat. Rome, Italy: Food and Agricultural Organization of the United Nations. Retrieved from http://www.fao.org/tempref/GI/Reserved/FTP_FaoRlc/old/proyecto/163nze/documentos/productos/1.pdf
- 29. Felix O., John N., Ekene E. 2016. Assessment of lead (Pb) residues in organs and muscles of slaughtered pigs at Nsukka and Environs in Enugu state, Nigeria. Journal of Advanced Veterinary and Animal Research, 3(4), 392–398. https://doi.org/10.5455/javar.2016.c178
- 30. Gall JE., Boyd RS., Rajakaruna N. 2015. Transfer of heavy metals through terrestrial food webs: a review. Environmental Monitoring and Assessment, 187(4). https://doi.org/10.1007/s10661–015–4436–3
- 31. Hashemi M. 2018. Heavy metal concentrations in bovine tissues (muscle, liver and kidney) and their relationship with heavy metal contents in consumed feed. Ecotoxicology and Environmental Safety, 154, 263–267. https://doi.org/10.1016/j.ecoenv.2018.02.058
- 32. Hembrom S., Singh B., Kumar Gupta SK., Kumar Nema A. 2020. A comprehensive evaluation of heavy metal contamination in foodstuff and associated human health risk: A global perspective. In P. Singh, R. P. Singh, & V. Srivastava (Eds.), Contemporary Environmental Issues and Challenges in Era of Climate Change (1 ed., pp. 33–63). Singapore: Springer Nature Singapore Pte Ltd. https://doi.org/10.1007/978–981–32–9595–7
- 33. Hermoso de Mendoza M., Hernández D., Soler F., López A., Fidalgo LE., Pérez M. 2011. Sexand age-dependent accumulation of heavy metals (Cd, Pb and Zn) in liver, kidney and muscle of roe deer (Capreolus capreolus) from NW Spain. Journal of Environmental Science and Health – Part A, 46(2), 109–116. https://doi.org/10.1080/10934529.2011.5 32422
- 34. Hinojosa RA., Yzarra A., Ruiz JA., Castrejón M. 2019. Structural characterization of the alpaca production system (Vicugna pacos) in Huancavelica, Perú. Animal Science Archives, 68(261), 100–108. https://doi.org/10.21071/az.v68i261.3945 [in spanish]
- 35. Hu B., Jia X., Hu J., Xu D., Xia F., Li Y. 2017. Assessment of heavy metal pollution and health risks in the soil-plant-human system in the Yangtze river delta, China. International Journal of Environmental Research and Public Health, 14(9). https://doi.org/10.3390/ijerph14091042
- 36. Huanqui Pérez R. 2018. Determination of heavy metals in pastures, fiber, meat and viscera of alpacas in communities of the Ananea district – Puno. Universidad Nacional del Altiplano. [in spanish]
- 37. IARC. 2012. Arsenic, metals, fibres, and dusts. Lyon, France: International Agency for Research on Cancer. Retrieved from https://www.iarc.fr/
- 38. Islam MS., Hossain MB., Matin A., Islam Sarker MS. 2018. Assessment of heavy metal pollution, distribution and source apportionment in the sediment from Feni River estuary, Bangladesh. Chemosphere, 202, 25–32. https://doi.org/10.1016/j.chemosphere.2018.03.077
- 39. Jadia CD., Fulekar MH. 2009. Phytoremediation of heavy metals: Recent techniques. African Journal of Biotechnology, 8(6), 921–928. https://doi.org/10.5897/AJB2009.000–9152
- 40. Kabata-Pendias A. 2011. Trace elements in soils and plant (Fourth Ed.). London, New York: Taylor and Francis Group. Retrieved from http://www.taylorandfrancis.com
- 41. Khalafalla F. ., Abdel-Atty N. ., Abb-El-Wahab,M., Ali OI., Abo-Elsoud RB. 2015. Assessment of heavy metal residues in retail meat and offals. Journal of American Science, 11(5), 50–54.
- 42. Khan S., Cao Q., Zheng YM., Huang YZ., Zhu YG. 2008. Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environmental Pollution, 152(3), 686–692. https://doi.org/10.1016/j.envpol.2007.06.056
- 43. Khan Z I., Ugulu I., Umar S., Ahmad K., Mehmood N., Ashfaq A., … Sohail M. 2018. Potential toxic metal accumulation in soil, forage and blood plasma of buffaloes sampled from Jhang, Pakistan. Bulletin of Environmental Contamination and Toxicology, 101(2), 235–242. https://doi.org/10.1007/s00128–018–2353–1
- 44. Kicińska A., Glichowska P., Mamak M. 2019. Microand macroelement contents in the liver of farm and wild animals and the health risks involved in liver consumption. Environmental Monitoring and Assessment, 191(3), 132. https://doi.org/10.1007/s10661–019–7274-x
- 45. Korkmaz C., Ay Ö., Ersoysal Y., Köroğlu MA., Erdem C. 2019. Heavy metal levels in muscle tissues of some fish species caught from north-east Mediterranean: Evaluation of their effects on human health. Journal of Food Composition and Analysis, 81, 1–9. https://doi.org/10.1016/j.jfca.2019.04.005
- 46. Kortei NK., Heymann ME., Essuman EK., Kpodo FM., Akonor PT., Lokpo SY., … Tettey C. 2020. Health risk assessment and levels of toxic metals in fishes (Oreochromis noliticus and Clarias anguillaris) from Ankobrah and Pra basins: Impact of illegal mining activities on food safety. Toxicology Reports, 7(August 2019), 360–369. https://doi.org/10.1016/j.toxrep.2020.02.011
- 47. Lehel J., Laczay P., Gyurcsó A., Jánoska F., Majoros S., Lányi K., Marosán M. 2015. Toxic heavy metals in the muscle of roe deer (Capreolus capreolus)–food toxicological significance. Environmental Science and Pollution Research, 23(5), 4465–4472. https://doi.org/10.1007/s11356–015–5658–1
- 48. Lü J., Jiao W., Qiu H., Chen B., Huang X., Kang B. 2018. Origin and spatial distribution of heavy metals and carcinogenic risk assessment in mining areas at You ’ xi County southeast China. Geoderma, 310(January 2017), 99–106. https://doi.org/10.1016/j.geoderma.2017.09.016
- 49. MacLachlan DJ., Budd K., Connolly J., Derrick J., Penrose L., Tobin T. 2016. Arsenic, cadmium, cobalt, copper, lead, mercury, molybdenum, selenium and zinc concentrations in liver, kidney and muscle in Australian sheep. Journal of Food Composition and Analysis, 50, 97–107. https://doi.org/10.1016/j.jfca.2016.05.015
- 50. Mamani-Linares LW., Cayo F., Gallo C. 2014. Carcass characteristics, meat quality and chemical composition of llama meat: A review. Journal of Veterinary Research of Peru, 25(2), 123–150. https://doi.org/10.1109/ITW.2013.6691279 [in spanish]
- 51. Miclean M., Cadar O., Levei EA., Roman R., Ozunu A., Levei L. 2019. Metal (Pb, Cu, Cd, and Zn) transfer along food chain and health risk assessment through raw milk consumption from freerange cows. International Journal of Environmental Research and Public Health, 16(21), 5–7. https://doi.org/10.3390/ijerph16214064
- 52. Ministery of Agricultural and Irrigation. (2019). Statistical Yearbook: Livestock and poultry production 2018. Lima, Perú: MINAGRI. Retrieved from http://siea.minagri.gob.pe/siea/?q=publicaciones/anuario-de-produccion-pecuaria [in spanish]
- 53. Ministery of the Environment. (2017). Approve environmental quality standards for soil. D. S. N° 011–2017-MINAM. Lima, Perú: El Peruano. Retrieved from http://www.minam.gob.pe/wp-content/uploads/2017/12/DS_011–2017-MINAM.pdf. [in spanish]
- 54. Ministry of Energy and Mines. (2000). Abandoned mines in the department of Huancavelica. Lima, Perú: Ministry of Energy and Mines. https://doi.org/10.1017/CBO9781107415324.004 [in spanish]
- 55. Miranda M., Alonso ML., Castillo C., Hernández J., Benedito JL. 2001. Cadmium levels in liver, kidney and meat in calves from Asturias (North Spain). European Food Research and Technology, 212(4), 426–430. https://doi.org/10.1007/s002170000266
- 56. National Academy of Sciences. 2005. Mineral tolerance of animals. Book (2nd rev. e). Washington DC: The National Academies Press. Retrieved from http://www.nap.edu/catalog.php?record_id=11309
- 57. Ogbomida ET., Nakayama SMM., Bortey-Sam N., Oroszlany B., Tongo I., Enuneku A. A., … Ishizuka M. 2018. Accumulation patterns and risk assessment of metals and metalloid in muscle and offal of free-range chickens, cattle and goat in Benin City, Nigeria. Ecotoxicology and Environmental Safety, 151, 98–108. https://doi.org/10.1016/j.ecoenv.2017.12.069
- 58. Oyekunle JAO., Ore OT., Durodola SS., Oyinloye JA., Oyebode BA., Ajanaku OL. 2020. Heavy metal levels and changes in trimethylamine content of smoked fish and meat under different storage conditions. SN Applied Sciences, 2(6). https://doi.org/10.1007/s42452–020–2844–7
- 59. Pérez V., Maino M., Guzmán R., Vaquero A., Köbrich C., Pokniak J. 2000. Carcass characteristics of llamas (Lama glama) reared in Central Chile. Small Ruminant Research: The Journal of the International Goat Association, 37(1–2), 93–97. https://doi.org/doi:10.1016/s0921–4488(99)00127–3
- 60. Pilarczyk B., Tomza-Marciniak A., Pilarczyk R., Udała J., Kruzhel B., Ligocki M. 2020. Content of essential and non-essential elements in wild animals from western Ukraine and the health risks associated with meat and liver consumption. Chemosphere, 244. https://doi.org/10.1016/j.chemosphere.2019.125506
- 61. Sabir S., Khan S., Hayat I. 2003. Effect of environmental pollution on quality of meat in district Bagh, Azad Kashmir. Pakistan Journal of Nutrition, 2(2), 98–101. https://doi.org/DOI: 10.3923/pjn.2003.98.101
- 62. Shafiuddin Ahmed AS., Sultana S., Habib A., Ullah H., Musa N., Belal Hossain M., … Shafiqul Islam Sarker M. 2019. Bioaccumulation of heavy metals in some commercially important fishes from a tropical river estuary suggests higher potential health risk in children than adults. PLoS ONE, 14(10), 1–21. https://doi.org/10.1371/journal.pone.0219336
- 63. Smith KM., Abrahams PW., Dagleish MP., Steigmajer J. 2009. The intake of lead and associated metals by sheep grazing mining-contaminated fl oodplain pastures in mid-Wales , UK : I . Soil ingestion , soil – metal partitioning and potential availability to pasture herbage and livest. Science of the Total Environment, The, 407(12), 3731–3739. https://doi.org/10.1016/j.scitotenv.2009.02.032
- 64. Sobhanardakani S. 2018. Human health risk assessment of Cd , Cu , Pb and Zn through consumption of raw and pasteurized cow ’ s milk. Iran J Public Health, 47(8), 1172–1180.
- 65. Stankovic S., Kalaba P., Stankovic A. 2014. Biota as toxic metal indicators. Environ Chem Lett, 12, 63–84. https://doi.org/DOI 10.1007/s10311–013–0430–6
- 66. Storelli A., Barone G., Dambrosio A., Garofalo R., Busco A., Storelli MM. 2020. Occurrence of trace metals in fish from South Italy: Assessment risk to consumer’s health. Journal of Food Composition and Analysis, 90, 103487. https://doi.org/10.1016/j.jfca.2020.103487
- 67. Uauy R., Olivares M., Gonzalez M. 1998. Essentiality of copper in humans. The American Journal and Clinical Nutrition, 67, 952S-959S. https://doi.org/10.1111/j.1753–4887.1987.tb06081.x
- 68. USEPA. 1989. Risk assessment guidance for superfund. Volume I. Human health evaluation manual (Part A). Washington DC, USA: United States Environmental Protection Agency. Retrieved from https://rais.ornl.gov/documents/HHEMA.pdf
- 69. USEPA. 2001. Risk assessment guidance for superfund: Volume III – Part A, process for conducting probabilistic risk assessment. United States Environmental Protection Agency. Retrieved from http://www.epa.gov/sites/production/files/2015–09/documents/rags3adt_complete.pdf
- 70. USEPA. 2007. Microwave assisted acid digestion of sediments, sludges, soils and oils, (United States Enviromental Protecction Agency). Retrieved from https://www.epa.gov/sites/production/files/2015–12/documents/3051a.pdf
- 71. USEPA IRIS. 2019. Integrated risk information system (IRIS). Regional screening levels (RSLs) – generic tables (November 2019). Washington DC, USA: United States Environmental Protection Agency. Retrieved from https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables
- 72. Wang Z., Hong C., Xing Y., Wang K., Li Y., Feng L., Ma S. 2018. Spatial distribution and sources of heavy metals in natural pasture soil around coppermolybdenum mine in Northeast China. Ecotoxicology and Environmental Safety, 154(January), 329–336. https://doi.org/10.1016/j.ecoenv.2018.02.048
- 73. Wilkinson JM., Hill J., Phillips CJC. 2003. The accumulation of potentially-toxic metals by grazing ruminants. Proceedings of the Nutrition Society, 62(2), 267–277. https://doi.org/10.1079/pns2003209
- 74. Xiao R., Guo D., Ali A., Mi S., Liu T., Ren C., … Zhang Z. 2019. Accumulation, ecological-health risks assessment, and source apportionment of heavy metals in paddy soils: A case study in Hanzhong, Shaanxi, China. Environmental Pollution, 248, 349–357. https://doi.org/10.1016/j.envpol.2019.02.045
- 75. Yu G., Zheng W., Wang W., Dai F., Zhang Z., Yuan Y., Wang Q. 2017. Health risk assessment of chinese consumers to cadmium via dietary intake. Journal of Trace Elements in Medicine and Biology, 44, 137–145. https://doi.org/10.1016/j.jtemb.2017.07.003
- 76. Zeinali T. 2019. Dietary intake of cadmium, chromium, copper, nickel, and lead through the consumption of meat, liver, and kidney and assessment of human health risk in Birjand , Southeast of Iran. Biological Trace Element Research, 191(2), 338–347. https://doi.org/https://doi.org/10.1007/s12011–019–1637–6Dietary
- 77. Zhang H., Mao Z., Huang K., Wang X., Cheng L., Zeng L., … Jing T. 2019. Multiple exposure pathways and health risk assessment of heavy metal(loid)s for children living in fourth-tier cities in Hubei Province. Environment International, 129(May), 517–524. https://doi.org/10.1016/j.envint.2019.04.031
- 78. Zhang L., Mo Z., Qin J., Li Q., Wei Y., Ma S., … Zou Y. 2015. Change of water sources reduces health risks from heavy metals via ingestion of water, soil and rice in a riverine area, South China. Science of the Total Environment, 530–531, 163–170. https://doi.org/10.1016/j.scitotenv.2015.05.100
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-94ae9d25-5a2a-4f3c-86a3-a6293bc0e937