PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Does there Exist an Algorithm which to Each Diophantine Equation Assigns an Integer which is Greater than the Modulus of Integer Solutions, if these Solutions form a Finite Set?

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let En = {xi = 1; xi + xj = xk; xi · xj = xk : i; j; k ∈ {1,...,n}}. We conjecture that if a system S ⊆ En has only finitely many solutions in integers x1,...,xn, then each such solution (x1,...,xn) satisfies |x1|,...,|xn| ≤ 22n−1. Assuming the conjecture, we prove: (1) there is an algorithm which to each Diophantine equation assigns an integer which is greater than the heights of integer (non-negative integer, rational) solutions, if these solutions form a finite set, (2) if a set M Í \mathbbN is recursively enumerable but not recursive, then a finite-fold Diophantine representation of M does not exist.
Wydawca
Rocznik
Strony
85--99
Opis fizyczny
Bibliogr. 10 poz.
Twórcy
autor
  • Faculty of Production and Power Engineering, University of Agriculture, Poland
Bibliografia
  • [1] M. Davis, On the number of solutions of Diophantine equations, Proc. Amer. Math. Soc. 35 (1972), no. 2, 552-554, http://www.jstor.org/stable/2S37646.
  • [2] M. Davis, Yu. Matiyasevich, J. Robinson, Hilbert’s tenth problem. Diophantine equations: positive aspects of a negative solution, in: Mathematical developments arising from Hilbert problems (ed. F. E. Browder), Proc. Sympos. Pure Math., vol. 28, Part 2, Amer. Math. Soc., 1976, 323-378; reprinted in: The collected works of Julia Robinson (ed. S. Feferman), Amer. Math. Soc., 1996, 269-324.
  • [3] L. B. Kuijer, Creating a diophantine description of a r.e. set and on the complexity of such a description, MSc thesis, Faculty of Mathematics and Natural Sciences, University of Groningen, 2010, http://irs. ub.rug.nl/dbi/4b87adf513823.
  • [4] Yu. Matiyasevich, Hilbert’s tenth problem, MIT Press, Cambridge, MA, 1993.
  • [5] Yu. Matiyasevich, Hilbert’s tenth problem: what was done and what is to be done. Hilbert’s tenth problem: relations with arithmetic and algebraic geometry (Ghent, 1999), 1-47, Contemp. Math. 270, Amer. Math. Soc., Providence, RI, 2000.
  • [6] Yu. Matiyasevich, Towards finite-fold Diophantine representations, Zap. Nauchn. Sem. S.-Petersburg. Otdel. Mat. Inst. Steklov. (POMI) 377 (2010), 78-90, ftp://ftp.pdmi.ras.ru/pub/publicat/znsl/v377/p078.pdf.
  • [7] W. Narkiewicz, Number theory, World Scientific, Singapore, 1983.
  • [8] I. Niven, Quadratic Diophantine equations in the rational and quadratic fields, Trans. Amer. Math. Soc. 52 (1942), 1-11.
  • [9] A. Schinzel, Integer points on conics, Comment. Math. Prace Mat. 16 (1972), 133-135, Erratum 17 (1973), 305.
  • [10] M. Waldschmidt, Open Diophantine problems, Mosc. Math. J. 4 (2004), no. 1, 245-305, http://arxiv. org/abs/math/®31244®.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-94ad5a2f-5149-4a65-9d19-d12d85d7816d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.