PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Interrelationship and Determining Factors of Water Quality Dynamics in Whiteleg Shrimp Ponds in Tropical Eco-Green Aquaculture System

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Whiteleg shrimp (Litopenaeus vannamei) farming is a major activity in the coastal areas of many tropical countries. To meet the demand in this market, the culture system has expanded using intensive technology, which has resulted in the emission of effluents that threaten the surrounding aquatic ecosystem. Therefore, proper aquaculture management is needed to ensure both economic and ecological benefits. This led to the emergence of eco-green aquaculture. Water quality monitoring is a critical part of aquaculture management and when performed regularly, it yields a large and complex dataset. In this study, the authors aimed to analyse the dynamics of water quality characteristics and the relationships between these variables in whiteleg shrimp ponds in a tropical eco-green aquaculture system from 2020 to 2022. Since the data includes nine parameters and is quite complex, the principal component analysis (PCA) approach was used. This method enables to identify the factors that determine water quality, which will help ensure effective and efficient aquaculture management. Consequently, the water quality variables in the studied area were reduced to five dimensions and salinity, ammonia, and pH were found to be the key factors responsible for the changes in water quality characteristics. Hence, these variables should be the focus of farming management systems.
Rocznik
Strony
19--27
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Twórcy
  • Department of Aquatic Resources Management, Faculty of Fisheries and Marine Science, Universitas Brawijaya, Veteran street, Malang 65145, Indonesia
  • AquaRES Research Group, Faculty of Fisheries and Marine Science, Universitas Brawijaya. Veteran street, Malang 65145, Indonesia
  • Department of Aquatic Resources Management, Faculty of Fisheries and Marine Science, Universitas Brawijaya, Veteran street, Malang 65145, Indonesia
  • AquaRES Research Group, Faculty of Fisheries and Marine Science, Universitas Brawijaya. Veteran street, Malang 65145, Indonesia
  • Department of Aquatic Resources Management, Faculty of Fisheries and Marine Science, Universitas Brawijaya, Veteran street, Malang 65145, Indonesia
  • AquaRES Research Group, Faculty of Fisheries and Marine Science, Universitas Brawijaya. Veteran street, Malang 65145, Indonesia
  • Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, 70-383 Szczecin, Poland
  • Department of Aquatic Resources Management, Faculty of Fisheries and Marine Science, Universitas Brawijaya, Veteran street, Malang 65145, Indonesia
  • AquaRES Research Group, Faculty of Fisheries and Marine Science, Universitas Brawijaya. Veteran street, Malang 65145, Indonesia
  • Department of Mathematics, Faculty of Mathematics and Natural Science, Veteran street, Malang 65145, Indonesia
autor
  • Faculty of Animal Husbandry, Marine and Fisheries, Universitas Nusa Cendana, Kupang, 85001, Indonesia
  • Department of Aquatic Resources Management, Faculty of Fisheries and Marine Science, Universitas Brawijaya, Veteran street, Malang 65145, Indonesia
  • Department of Aquatic Resources Management, Faculty of Fisheries and Marine Science, Universitas Brawijaya, Veteran street, Malang 65145, Indonesia
  • Department of Aquatic Resources Management, Faculty of Fisheries and Marine Science, Universitas Brawijaya, Veteran street, Malang 65145, Indonesia
Bibliografia
  • 1. Adnan, K.N.A.K., Yusuf, N., Maamor, H.N., Rashid, F.N.A., Ismail, S.W.M., Thriumani, R., Zakaria, A., Kamarudin, L.M., Shakaff, A.Y.M., Jaafar, M.N., Ahmad, M.N. 2014. Water quality classification and monitoring using e-nose and e-tongue in aquaculture farming. In: 2014 2nd International Conference on Electronic Design (ICED), 343–346.
  • 2. Ahmed, S., Sarker, S.K., Friess, D.A., Kamruzzaman, Md., Jacobs, M., Islam, M.A., Alam, Md.A., Suvo, M.J., Sani, Md.N.H., Dey, T., Naabeh, C.S.S., Pretzsch, H. 2022. Salinity reduces site quality and mangrove forest functions. From monitoring to understanding. Science of The Total Environment, 853, 158662.
  • 3. Asche, F. 2011. Green Growth in Fisheries and Aquaculture Production and Trade.
  • 4. Badjeck, M.-C., Allison, E.H., Halls, A.S., Dulvy, N.K. 2010. Impacts of climate variability and change on fishery-based livelihoods. Marine Policy, 34(3), 375–383.
  • 5. Boyd, C.E. 2015. pH, Carbon Dioxide, and Alkalinity. In: Boyd, C.E. (Ed.), Water Quality: An Introduction. Springer International Publishing, Cham, 153–178.
  • 6. Boyd, C.E. 2017. Chapter 6 - General Relationship Between Water Quality and Aquaculture Performance in Ponds. In: Jeney, G.B.T.-F.D. (Ed.), Academic Press, 147–166.
  • 7. Bush, S.R., van Zwieten, P.A.M., Visser, L., van Dijk, H., Bosma, R., de Boer, W.F., Verdegem, M. 2010. Scenarios for Resilient Shrimp Aquaculture in Tropical Coastal Areas. Ecology and Society, 15(2).
  • 8. Carbajal, J.J., Sánchez, L.P. 2008. Classification Based on Fuzzy Inference Systems for Artificial Habitat Quality in Shrimp Farming. In: 2008 Seventh Mexican International Conference on Artificial Intelligence, 388–392.
  • 9. Chand, B.K., Trivedi, R.K., Dubey, S.K., Rout, S.K., Beg, M.M., Das, U.K. 2015. Effect of salinity on survival and growth of giant freshwater prawn Macrobrachium rosenbergii (de Man). Aquaculture Reports, 2, 26–33.
  • 10. Czuba, J.A., Magirl, C.S., Czuba, C.R., Grossman, E.E., Curran, C.A., Gendaszek, A.S., Dinicola, R.D. 2011. Comparability of Suspended-Sediment Concentration and Total Suspended-Solids Data for Two Sites on the L’Anguille River, Arkansas, 2001 to 2003 Scientific Investigations Report 2005-5193.
  • 11. De-León-Herrera, R., Flores-Verdugo, F., Floresde-Santiago, F., González-Farías, F. 2015. Nutrient removal in a closed silvofishery system using three mangrove species (Avicennia germinans, Laguncularia racemosa, and Rhizophora mangle). Marine Pollution Bulletin, 91(1), 243–248.
  • 12. Emerenciano, M.G.C., Rombenso, A.N., Vieira, F. d. N., Martins, M.A., Coman, G.J., Truong, H.H., Noble, T.H., Simon, C.J.y 2022. Intensification of Penaeid Shrimp Culture: An Applied Review of Advances in Production Systems, Nutrition and Breeding. Animals, 12(3).
  • 13. Esparza-Leal, H.M., Ponce-Palafox, J.T., Aragón-Noriega, E.A., Arredondo-Figueroa, J.L., García-Ulloa Gómez, M., Valenzuela-Quiñonez, W. 2010. Growth and performance of the whiteleg shrimp Penaeus vannamei (Boone) cultured in low-salinity water with different stocking densities and acclimation times. Aquaculture Research, 41(6), 878–883.
  • 14. Ferreira, N.C., Bonetti, C., Seiffert, W.Q. 2011. Hydrological and Water Quality Indices as management tools in marine shrimp culture. Aquaculture, 318(3), 425–433.
  • 15. Gao, W., Tian, L., Huang, T., Yao, M., Hu, W., Xu, Q. 2016. Effect of salinity on the growth performance, osmolarity and metabolism-related gene expression in white shrimp Litopenaeus vannamei. Aquaculture Reports, 4, 125–129.
  • 16. Hasibuan, S., Syafriadiman, S., Aryani, N., Fadhli, M., Hasibuan, M. 2021. The age and quality of pond bottom soil affect water quality and production of Pangasius hypophthalmus in the tropical environment. Aquaculture and Fisheries.
  • 17. Iber, B.T., Kasan, N.A. 2021. Recent advances in Shrimp aquaculture wastewater management. Heliyon, 7(11), e08283.
  • 18. Jaffer, Y.D., Saraswathy, R., Ishfaq, M., Antony, J., Bundela, D.S., Sharma, P.C. 2020. Effect of low salinity on the growth and survival of juvenile pacific white shrimp, Penaeus vannamei: A revival. Aquaculture, 515, 734561.
  • 19. Jolliffe, I.T., Cadima, J. 2016. Principal component analysis: a review and recent developments. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, 374(2065), 20150202.
  • 20. Kathyayani, S.A., Poornima, M., Sukumaran, S., Nagavel, A., Muralidhar, M. 2019. Effect of ammonia stress on immune variables of Pacific white shrimp Penaeus vannamei under varying levels of pH and susceptibility to white spot syndrome virus. Ecotoxicology and Environmental Safety, 184, 109626.
  • 21. Koyama, M., Nagao, N., Syukri, F., Rahim, A.A., Toda, T., Tran, Q.N.M., Nakasaki, K. 2020. Ammonia recovery and microbial community succession during thermophilic composting of shrimp pond sludge at different sludge properties. Journal of Cleaner Production, 251, 119718.
  • 22. Kumlu, M., Eroldogan, O.T., Aktas, M. 2000. Effects of temperature and salinity on larval growth, survival and development of Penaeus semisulcatus. Aquaculture, 188(1), 167–173.
  • 23. Lin, Y.C., Chen, J.C. 2001. Acute toxicity of ammonia on Litopenaeus vannamei Boone juveniles at different salinity levels. Journal of Experimental Marine Biology and Ecology, 259(1), 109–119.
  • 24. Lusiana, E., Mahmudi, M., Hutahaean, S., Darmawan, A., Buwono, N., Arsad, S., Musa, M. 2022. A Multivariate Technique to Develop Hybrid Water Quality Index of the Bengawan Solo River, Indonesia. Journal of Ecological Engineering, 23(2), 123–131.
  • 25. Lusiana, E.D., Mahmudi, M. 2020. Teori dan Praktik Analisis Data Univariat dengan PAST. UB Press, Malang.
  • 26. Lusiana, E.D., Musa, M., Ramadhan, S. 2019. The estimation of nutrient limit for predicting eutrophication using quantile regression model (case study: Aquaculture pond at IBAT Punten, Batu). In: IOP Conference Series: Earth and Environmental Science.
  • 27. Lyles, C., Boopathy, R., Fontenot, Q., Kilgen, M. 2008. Biological Treatment of Shrimp Aquaculture Wastewater Using a Sequencing Batch Reactor. Applied Biochemistry and Biotechnology, 151(2), 474.
  • 28. Mahmudi, M., Musa, M., Arsad, S., Lusiana, E.D., Bunga, A., Wati, N.A. 2021. Use of Phytoplankton to Assess Water Quality of Eco-Aquaculture System in Super-Intensive Whiteleg Shrimp (Litopenaeus vannamei) Pond. Advances in Animal and Veterinary Sciences, 10(5), 971–979.
  • 29. Mahmudi, M., Musa, M., Bunga, A., Wati, N.A., Arsad, S., Lusiana, E.D. 2022. A Water Quality Evaluation of Integrated Mangrove Aquaculture System for Water Treatment in Super-Intensive White Leg Shrimp Pond. Journal of Ecological Engineering, 23(4), 287–296.
  • 30. McQuatters-Gollop, A., Gilbert, A.J., Mee, L.D., Vermaat, J.E., Artioli, Y., Humborg, C., Wulff, F. 2009. How well do ecosystem indicators communicate the effects of anthropogenic eutrophication? Estuarine, Coastal and Shelf Science, 82(4), 583–596.
  • 31. Murray, I., Parsons, J.W., Robinson, K. 1975. Inter-relationships between nitrogen balance, pH and dissolved oxygen in an oxidation ditch treating farm animal waste. Water Research, 9(1), 25–30.
  • 32. Musa, M., Lusiana, E.D., Buwono, N.R., Arsad, S., Mahmudi, M. 2020. The effectiveness of silvofishery system in water treatment in intensive whiteleg shrimp (Litopenaeus vannamei) ponds, probolinggo district, East Java, Indonesia. Biodiversitas, 21(10), 4695–4701.
  • 33. Musa, M., Mahmudi, M., Arsad, S., Buwono, N.R. 2019. Feasibility study and potential of pond as silvofishery in coastal area: Local case study in Situbondo Indonesia. Regional Studies in Marine Science, 100971.
  • 34. Nirmal, N.P., Santivarangkna, C., Rajput, M.S., Benjakul, S. 2020. Trends in shrimp processing waste utilization: An industrial prospective. Trends in Food Science & Technology, 103, 20–35.
  • 35. Orozco-Lugo, A.G., McLernon, D.C., Lara, M., Zaidi, S.A.R., González, B.J., Illescas, O., Pérez-Macías, C.I., Nájera-Bello, V., Balderas, J.A., Pizano-Escalante, J.L., Perera, C.M., Rodríguez-Vázquez, R. 2022. Monitoring of water quality in a shrimp farm using a FANET. Internet of Things, 18, 100170.
  • 36. Patil, P.K., Antony, L., Avunje, S., Viswanathan, B., Lalitha, N., Jangam, A.K., Kumar, D., Solanki, H.G., Reddy, M.A., Alavandi, S.V., Vijayan, K.K. 2021. Bioaugmentation with nitrifying and denitrifying microbial consortia for mitigation of nitrogenous metabolites in shrimp ponds. Aquaculture, 541, 736819.
  • 37. Peng, Yisheng, Li, X., Wu, K., Peng, Yougui, Chen, G. 2009. Effect of an integrated mangrove-aquaculture system on aquacultural health. Frontiers of Biology in China, 4(4), 579.
  • 38. Rencher, A.C., Christensen, W.F. 2012. Methods of multivariate analysis. Wiley, New Jersey.
  • 39. Rurangwa, E., Baumgartner, U., Nguyen, H.M., van de Vis, J.W. 2017. Aquaculture Innovation in Vietnam. Journal of Environmental Science and Engineering B, 6(4), 236–241.
  • 40. Suwoyo, H.S., Nirmala, K., Djokosetiyanto, Mulyaningrum, S.R.H. 2015. Faktor Dominan yang Berpengaruh Pada TIingkat Konsumsi Oksigen Sedimen Di Tambak Intensif Udang Vaname(Litopenaeus vannamei). Jurnal Ilmu dan Teknologi Kelautan Tropis, 7(2), 639–654.
  • 41. Tumwesigye, Z., Tumwesigye, W., Opio, F., Kemigabo, C., Mujuni, B. 2022. The Effect of Water Quality on Aquaculture Productivity in Ibanda District, Uganda. Aquaculture Journal, 2(1), 23–36.
  • 42. Walker, S.J., Neill, W.H., Lawrence, A.L., Gatlin, D.M. 2009. Effect of salinity and body weight on eco-physiological performance of the Pacific white shrimp (Litopenaeus vannamei). Journal of Experimental Marine Biology and Ecology, 380(1), 119–124.
  • 43. Wickins, J.F. 1984. The effect of reduced pH on carapace calcium, strontium and magnesium levels in rapidly growing prawns (Penaeus monodon fabricius). Aquaculture, 41(1), 49–60.
  • 44. Wu, J., Zhang, K., Cen, C., Wu, X., Mao, R., Zheng, Y. 2021. Role of bulk nanobubbles in removing organic pollutants in wastewater treatment. AMB Express, 11(1), 96.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-94a853ae-6f15-4549-87e8-e010a4d75808
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.