PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Radar-based detection and recognition methodology of autonomous surface vehicles in challenging marine environment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a methodology that combines radar polarization selection and recognition techniques for navigating objects in atmospheric formations, with a special focus on unmanned surface vehicles (ASVs). The proposed technique utilizes the concept of an energy dissipation matrix to represent these objects as characteristic “shiny dots”. By strategically changing the polarization of the emitted and received electromagnetic waves, the resulting echo energy dissipation matrix is determined. This approach allows the formation of an intensity-based repository of atmospheric formations, which gives SRPC a complete set of tools to account for atmospheric conditions in radar identification of remote objects, including ASVs. The practical application of this technique extends to the improvement of a distinct class of shipborne radar systems optimized for ASVs and their specific navigation requirements. Ultimately, this technology bridges the gap between advanced radar technology and the emerging field of unmanned ground vehicles, providing safer and more proficient navigation in challenging weather conditions.
Rocznik
Tom
Strony
111--127
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
  • Department of Ship Handling, National University “Odessa Maritime Academy”, 8, Didrikhson Str., Odesa, 65052, Ukraine
  • Department of Navigation and Maritime Safety, Odesa National Maritime University, 34, Mechnikov Str., Odesa, 65029, Ukraine
  • Department of Technical Fleet Operation, National University “Odessa Maritime Academy”, 8, Didrikhson Str., Odesa, 65052, Ukraine
  • Institute of Naval Forces, National University “Odessa Maritime Academy”, 8, Didrikhson Str., Odesa, 65052, Ukraine
  • Department of Technical ship operation of the Institute of Postgraduate Education, National University “Odessa Maritime Academy”, 8, Didrikhson Str., Odesa, 65052, Ukraine
  • Department of Logistics, Odessa Military Academy, 10, Fontans'ka Rd, 10, Odesa, 65009 Ukraine
Bibliografia
  • 1. Voskresensky D.I. 2004. Active phase-discharge antenna arrays. Radiotekhnika. 488 p.
  • 2. Galimov G.K. 2013. Antennas of radio telescopes, space communication and radiolocation systems. Monograph. NPK “Antenny-Svyaz”. 391 p.
  • 3. Zaitsev D.V. 2004. Multiposition radar systems. Methods and algorithms of the information processing in the interference conditions. Radiotekhnika. 488 p.
  • 4. Averyanova Yu., A. Averyanov, F. Yanovsky. 2010. “Statistical evaluation of the turbulence influence on the change of the polarization angle of the radio waves reflected from the hydro-theater”. Electronics and Systems Research 2(24): 5-11.
  • 5. Plekin, V.Ya. 2003. Digital researches of moving circuits selection. SEINS-PRESS. 80 p.
  • 6. Kozlov I. 2000. “Parameters of a two-point statistical model for simulation of a complex radar object”. Radioelektronika 5-6: 19-23.
  • 7. Korban D. 2014. “Increasing the level of control over the ecological state of atmospheric air on the southern coast by remote monitoring methods”. Candidate of Technical Sciences (PhD) thesis. Odesa National Marine Academy. 211 p.
  • 8. Afanasyev V., A. Marinich, A. Pripotnyuk. 2010. Ustinov Yu. Ship radar systems. Edited by Yu. Ustinov. Velenara. 336 p.
  • 9. Tymoshchuk O., Y. Shapran, I. Trofymenko. 2017. “Uncertainty function of dual radiometric complexes. Standardization, certification, quality assurance”. UkrNDNC 2(105): 79-84.
  • 10. Petrushenko M. 2009. “Peculiarities of the use of radio systems of the Armed Forces of Ukraine in unstable hydrometeorological and meteorological conditions”. Systems of administrative navigation and management 2(10): 54-57.
  • 11. Bole A.G., D.A. Wall, A. Norris. 2014. Radar and ARPA Manual: Radar, AIS and Target Tracking for Marine Radar Users. 3rd edition. Oxford, United Kingdom. Elsevier Science & Technology. 552 p.
  • 12. Kozlov A., I. Kozlov, I. Logvin, V. Sarychev. 2005. Polarization of radio waves. Polarization structure of radar signals. Radiotekhnika. 704 p.
  • 13. Putyatin V., S. Gudenko, S. Zaichko, D. Korban, A. Knyaz'. 2017. “Radar propagation of navigational objects on the way to the ship by the polarization parameter of the electromagnetic wave”. Mathematical Modeling and Systems 4: 120-128.
  • 14. Korban D.V. 2021. “Analysis of functional characteristics of navigation object and external environment at functional ship radar”. Ship Power Plants 43: 172-195.
  • 15. Putyatin V., D. Korban, A. Knyaz. 2018. “Radar information channel matrix for radar navigation objects positioning on the mainstem”. Mathematical Machines and Systems 2: 141-147.
  • 16. Nanjing Yu., R. Haohao, D. Tianmin, F. Xiaobiao. 2023. “A Lightweight Radar Ship Detection Framework with Hybrid Attentions”. Remote Sensing 15: 2743. DOI: 10.3390/rs15112743.
  • 17. Xueqian Xu, Wu Bing, Xie Lei, A.P. Teixeira, Yan Xinping. 2023. “A Novel Ship Speed and Heading Estimation Approach Using Radar Sequential Images”. IEEE Transactions on Intelligent Transportation Systems: 1-14. DOI: 10.1109/TITS.2023.3281547.
  • 18. Zhe Chen, Ding Zhiquan, Zhang Xiaoling, Wang Xiaoting, Zhou Yuanyuan. 2023. “Inshore Ship Detection Based on Multi-Modality Saliency for Synthetic Aperture Radar Images”. Remote Sensing 15: 3868. DOI: 10.3390/rs15153868.
  • 19. Yongsheng Zhou, Liu Hanchao, Ma Fei, Pan Zongxu, Zhang Fan. 2023. “A Sidelobe-Aware Small Ship Detection Network for Synthetic Aperture Radar Imagery”. IEEE Transactions on Geoscience and Remote Sensing 1-1. DOI: 10.1109/TGRS.2023.3264231.
  • 20. Bing Chen, Zhu Yuting, Wang Chen, Wang Xiaoqing. 2023. “Synthetic Aperture Radar Image Ship Detection Based on YOLO-SARshipNet”. In: Communications, Signal Processing, and Systems. DOI: 10.1007/978-981-99-1260-5_1.
  • 21. Zhuolin Wang, Zhang Yingjun. 2022. “Estimation of ship berthing parameters based on Multi-LiDAR and MMW radar data fusion”. Ocean Engineering 266: 113155. DOI: 10.1016/j.oceaneng.2022.113155.
  • 22. Droszcz A., K. Jedrzejewski, J. Kłos, K. Kulpa, M. Pożoga. 2021. “Beamforming of LOFAR Radio-Telescope for Passive Radiolocation Purposes”. Remote Sensing 13: 810. DOI: 10.3390/rs13040810.
  • 23. Sobirin Farhan Fatwa, Nugraha Satia, Haz Fauzia, Sitompul Peberlin. 2022. “Study of Cassegrain-type antenna for radio telescope”. Journal of Physics: Conference Series 2214: 012028. DOI: 10.1088/1742-6596/2214/1/012028.
  • 24. Rudenko S., A. Shakhov, I. Lapkina, O. Shumylo, M. Malaksiano, I. Horchynskyi. 2022. “Multicriteria Approach to Determining the Optimal Composition of Technical Means in the Design of Sea Grain Terminals”. Transactions on Maritime Science 11(1): 28-44. DOI: 10.7225/toms.v11.n01.003.
  • 25. Bushuyev S., S. Onyshchenko, N. Bushuyeva, A. Bondar. 2021. “Modelling projects portfolio structure dynamics of the organization development with a resistance of information entropy”. International Scientific and Technical Conference on Computer Sciences and Information Technologies 2: 293-298. DOI: 10.1109/CSIT52700.2021.9648713.
  • 26. Ilcev Dimov Stojce. 2023. “Design and Types of Wire Mobile Satellite Antennas (MSA)”. Journal of Maritime Research 20(2):1-5.
  • 27. Yarovenko V.A., P.S. Chernikov, E.I. Zaritskaya, A.N. Schumylo. 2020. “Control of electric ships’ propulsion motors when moving on curvilinear trajectory”. Electrical Engineering and Electromechanics 5: 58-65. DOI: 10.20998/2074-272X.2020.5.09.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-94a68da8-611b-408f-b0bf-ddedf2e63c8c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.