Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Mechanical properties of cervical spine ligaments are of great importance for an accurate finite element model when analyzing the injury mechanism. However, there is still little experimental data in literature regarding fresh human cervical spine ligaments under physiological conditions. The focus of the presented study is placed on three cervical spine ligaments that stabilize the spine and protect the spinal cord: the anterior longitudinal ligament, the posterior longitudinal ligament and the ligamentum flavum. The ligaments were tested within 24-48 hours after death, under two different loading rates. An increase trend in failure load, failure stress, stiffness and modulus was observed, but proved not to be significant for all ligament types. The loading rate had the highest impact on failure forces for all three ligaments (a 39.1 % average increase was found). The observed increase trend, compared to the existing increase trends reported in literature, indicates the importance of carefully applying the existing experimental data, especially when creating scaling factors. A better understanding of the loading rate effect on ligaments properties would enable better case-specific human modelling.
Czasopismo
Rocznik
Tom
Strony
13--20
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr.
Twórcy
autor
- Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana, Slovenia
autor
- Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana, Slovenia
autor
- Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana, Slovenia
autor
- Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana, Slovenia
Bibliografia
- [1] WHITE A.A., PANJABI M.M., Clinical biomechanics of the spine, 2nd ed., Philadelphia, J.B. Lippincott, 1990.
- [2] IVANCIC P.C., PEARSON A.M., PANJABI M.M., ITO S., Injury of the anterior longitudinal ligament during whiplash simulation, Eur. Spine. J., 2004, 13, 61–8.
- [3] PANJABI M.M., CHOLEWICKI J., NIBU K., GRAUER J.N., BABAT L.B., DVORAK J., Mechanism of whiplash injury, Clin. Biomech. (Bristol, Avon), 1998, 13, 239–49.
- [4] PANJABI M.M., CRISCO J.J., VASAVADA A., ODA T., CHOLEWICKI J., NIBU K., SHIN E., Mechanical properties of the human cervical spine as shown by three-dimensional loaddisplacement curves, Spine (Phila Pa 1976), 2001, 26, 2692–700.
- [5] TOMINAGA Y., NDU A.B., COE M.P., VALENSON A.J., IVANCIC P.C., ITO S., RUBIN W., PANJABI M.M., Neck ligament strength is decreased following whiplash trauma, BMC Musculoskelet. Disord., 2006, 7, 103.
- [6] PEARSON A.M., PANJABI M.M., IVANCIC P.C., ITO S., CUNNINGHAM B.W., RUBIN W., GIMENEZ S.E., Frontal impact causes ligamentous cervical spine injury, Spine (Phila Pa 1976), 2005, 30, 1852–8.
- [7] CAPPON H. VRM, WISMANS J., HELL W., LANG D., SVENSSON M., Whiplash injuries, not only a problem in rear-end impact, 18th Int. Tech. Conf. Enhan. Saf. Veh., Nagoya, Japan: NHTSA, 2003.
- [8] PANZER M.B., FICE J.B., CRONIN D.S., Cervical spine response in frontal crash, Med. Eng. Phys., 2011, 33, 1147–59.
- [9] ITO S., IVANCIC P.C., PANJABI M.M., CUNNINGHAM B.W., Soft tissue injury threshold during simulated whiplash: a biomechanical investigation, Spine (Phila Pa 1976), 2004, 29, 979–87.
- [10] OMEROVIC S., STOJANOVIĆ A., KRAŠNA S., PREBIL I., Finite element model of human head, neck and torso for adult and 3yo child, J. Biomech., 2012, 45(Supp 1), S205.
- [11] BASS C.R., LUCAS S.R., SALZAR R.S., OYEN M.L., PLANCHAK C., SHENDER B.S., PASKOFF G., Failure properties of cervical spinal ligaments under fast strain rate deformations, Spine (Phila Pa 1976), 2007, 32, E7–13.
- [12] BASS C.R., PLANCHAK C.J., SALZAR R.S., LUCAS S.R., RAFAELS K.A., SHENDER B.S., PASKOFF G., The temperaturedependent viscoelasticity of porcine lumbar spine ligaments, Spine (Phila Pa 1976), 2007, 32, E436–42.
- [13] NEUMANN P., EKSTROM L.A., KELLER T.S., PERRY L., HANSSON T.H., Aging, vertebral density, and disc degeneration alter the tensile stress-strain characteristics of the human anterior longitudinal ligament, J. Orthop. Res., 1994, 12, 103–12.
- [14] STOJANOVIĆ A., OMEROVIĆ S., KRAŠNA S., PREBIL I., Mechanical properties of human cervical spine ligaments: age related changes, J. Biomech., 2012, 45(Supp 1), S611.
- [15] CHAZAL J., TANGUY A., BOURGES M., GAUREL G., ESCANDE G., GUILLOT M., VANNEUVILLE G., Biomechanical properties of spinal ligaments and a histological study of the supraspinal ligament in traction, J. Biomech., 1985, 18, 167–76.
- [16] MYKLEBUST J.B., PINTAR F., YOGANANDAN N., CUSICK J.F., MAIMAN D., MYERS T.J., SANCES A.JR., Tensile strength of spinal ligaments, Spine, 1988, 13, 526–31.
- [17] PRZYBYLSKI G.J., CARLIN G.J., PATEL P.R., WOO S.L., Human anterior and posterior cervical longitudinal ligaments possess similar tensile properties, J. Orthop. Res., 1996, 14, 1005–8.
- [18] BUTLER J., PINTAR F., YOGANANDAN N., MYKLEBUST J., REINARTZ J., SANCES A. JR., Static and dynamic comparison of human cervical spinal ligaments, Conf. Proc. IEEE Eng. Med. Bio. Soc. 1988, 1988, Vol. 2, 679–80.
- [19] YOGANANDAN N., KUMARESAN S., PINTAR F.A., Geometric and Mechanical Properties of Human Cervical Spine Ligaments, J. Biomech. Eng., 2000, 122, 623–9.
- [20] IVANCIC P.C., COE M.P., NDU A.B., TOMINAGA Y., CARLSON E.J., RUBIN W., PANJABI M.M., Dynamic mechanical properties of intact human cervical spine ligament, Spine J., 2007, 7, 659–65.
- [21] LUCAS S.R., BASS C.R., SALZAR R.S., OYEN M.L., PLANCHAK C., ZIEMBA A., SHENDER B.S., PASKOFF G., Viscoelastic properties of the cervical spinal ligaments under fast strainrate deformations, Acta Biomater., 2008, 4, 117–25.
- [22] TROYER K.L., PUTTLITZ C.M., Human cervical spine ligaments exhibit fully nonlinear viscoelastic behavior, Acta Biomater., 2011, 7, 700–9.
- [23] MATTUCCI S.F.E., MOULTON J.A., CHANDRASHEKAR N., CRONIN D.S., Strain rate dependent properties of younger human cervical spine ligaments, J. Mech. Behav. Biomed., 2012, 10, 216–26.
- [24] SHARPE W.N., Springer Handbook of Experimental Solid Mechanics, Springer, 2008.
- [25] MOON D.K., WOO S.L., TAKAKURA Y., GABRIEL M.T., ABRAMOWITCH S.D., The effects of refreezing on the viscoelastic and tensile properties of ligaments, J. Biomech., 2006, 39, 1153–7.
- [26] CHENG S., CLARKE E.C., BILSTON L.E., The effects of preconditioning strain on measured tissue properties, J. Biomech., 2009, 42, 1360–2.
- [27] QUINN K.P., WINKELSTEIN B.A., Preconditioning is correlated with altered collagen fiber alignment in ligament, J. Biomech. Eng., 2011, 133(6), 064506.
- [28] NATALI A., PAVAN P., CARNIEL E., DARIO P., IZZO I., Characterization of soft tissue mechanics with aging, IEEE Eng. Med. Biol. Mag., 2008, 27, 15–22.
- [29] PROVENZANO P.P., HEISEY D., HAYASHI K., LAKES R., VANDERBY R., Subfailure damage in ligament: a structural and cellular evaluation, J. Appl Physiol., 2002, 92, 362–371.
- [30] PUTZ R., The detailed functional anatomy of the ligaments of the vertebral column, Ann. Anat., 1992, 174, 40–7.
- [31] YOGANANDAN N., KUMARESAN S., PINTAR F.A., Biomechanics of the cervical spine Part 2. Cervical spine soft tissue responses and biomechanical modeling, Clin. Biomech. (Bristol, Avon), 2001, 16, 1–27.
- [32] MOON D.K., ABRAMOWITCH S.D., WOO S.Y, The development and validation of a charge-coupled device laser reflectance system to measure the complex cross-sectional shape and area of soft tissues, J. Biomech., 2006, 32, 3071–3075.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-94a560ee-4cd2-4282-94ac-3dfa9702be44