PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Progress and perspectives in total body PET systems instrumentation

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Total body positron emission tomography (PET) systems are being developed by different groups worldwide. These systems have potential to change the number of applications in which molecular imaging is used. The change from a short axial field of view (FOV) to a longer one is however associated with a linear increase in the cost of these systems. This may limit their application to a small number of centers (capable of obtaining sufficient research funding). Therefore it remains interesting to see if lower cost systems can be developed and bring total body PET to the clinic for an acceptable budget. The wider availability of this low cost system can also enable more researchers to further optimize and explore the full potential of total body PET.
Słowa kluczowe
EN
Rocznik
Strony
265--267
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
  • Department of Electronics and Information Systems, MEDISIP, Ghent UniversityIBiTech, De Pintelaan 185 Block B, B-9000 Ghent, Belgium
Bibliografia
  • 1. Muehllehner G, Karp JS. Positron emission tomography. Phys Med Biol 2006;51:117-37.
  • 2. Lewellen TK. Recent developments in PET detector technology. Phys Med Biol 2008;53:287.
  • 3. Peng BH, Levin CS. Recent development in PET instrumentation. Curr Pharmaceut Biotechnol 2010;11:555-71.
  • 4. Karp JS, Surti S, Daube-Witherspoon ME, Muehllehner G. Benefit of time-of-flight in PET: experimental and clinical results. J Nucl Med 2008;49:462-70.
  • 5. Surti S, Karp JS. Advances in time-of-flight pet. Phys Med 2016; 32:12-22.
  • 6. Britvitch I, Johnson I, Renker D, Stoykov A, Lorenz E. Characterisation of Geiger-mode avalanche photodiodes for medical imaging applications. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 2007;571:308-11.
  • 7. Roncali E, Cherry SR. Application of silicon photomultipliers to positron emission tomography. Ann Biomed Eng 2011;39:1358-77.
  • 8. Surti S, Karp JS. Impact of detector design on imaging performance of a long axial field-of-view, whole-body PET scanner. Phys Med Biol 2015;60:5343-58.
  • 9. Schmall JP, Karp JS, Werner M, Surti S. Parallax error in long-axial field-of-view PET scanners - a simulation study. Phys Med Biol 2016;61:5443-55.
  • 10. Eriksson L, Townsend D, Conti M, Eriksson M, Rothfuss H, Schmand M, et al. An investigation of sensitivity limits in pet scanners. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 2007;580:836-42.
  • 11. Cherry S, Karp J, Moses W, Qi J, Bec J, Berg E, et al. In: Proceedings of IEEE nuclear science symposium and medical imaging conference; 2013. M03-01.
  • 12. Badawi RD, Shi H, Hu P, Chen S, Xu T, Price PM, et al. First human imaging studies with the explorer total-body pet scanner. J Nucl Med 2019;60:299-303.
  • 13. Karp JS, Vishwanath V, Geagan M, Muehllehner G, Pantel A, Parma M, et al. Pennpet explorer: design and preliminary performance of a whole-body imager. J Nucl Med 2020;61: 136-43.
  • 14. Stockhoff M, Decuyper M, Van Holen R, Vandenberghe S. Highresolution monolithic LYSO detector with 6-layer depth-ofinteraction for clinical PET. Phys Med Biol 2021;66:155014.
  • 15. Vandenberghe S, Moskal P, Karp JS. State of the art in total body PET. EJNMMI Phys 2020;7:35.
  • 16. Surti S, Werner M, Karp J. Study of pet scanner designs using clinical metrics to optimize the scanner axial fov and crystal thickness. Phys Med Biol 2013;58:3995.
  • 17. Moskal P, Stępień EŁ. Prospects and clinical perspectives of totalbody PET imaging using plastic scintillators. Pet Clin 2020;15: 439-52.
  • 18. Beltrame P, Bolle E, Braem A, Casella C, Chesi E, Clinthorne N, et al. The ax-pet demonstrator design, construction and characterization. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 2011;654:546-59.
  • 19. Moskal P, Salabura P, Silarski M, Smyrski J, Zdebik J, Zieliński M. Novel detector systems for the positron emission tomography. Bio Algorithm Med Syst 2011;7:73.
  • 20. Moskal P, Rundel O, Alfs D, Bednarski T, Białas P, Czerwiński E, et al. Time resolution of the plastic scintillator strips with matrix photomultiplier readout for J-PET tomograph. Phys Med Biol 2016;61:2025.
  • 21. Moskal P, Kowalski P, Shopa RY, Raczyński L, Baran J, Chug N, et al. Simulating NEMA characteristics of the modular total-body J-PET scanner - an economic total-body PET from plastic scintillators. Phys Med Biol 2021;66:175015.
  • 22. Catana C. The dawn of a new era in low-dose pet imaging. Radiology 2019;290:657-8.
  • 23. Kaplan S, Zhu YM. Full-dose pet image estimation from low-dose pet image using deep learning: a pilot study. J Digit Imag 2018: 1-6.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-94a20e20-191d-4831-944e-d6c7358bb155
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.