Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the paper, the construction and properties of a layered piezoelectric transducer made of biodegradable materials are presented. The transducer consists of an electret layer, an elastic coating, and an outer structural layer. As the electret layer, the polylactide (PLA) foil with a thickness of 20 μm was used. The electrical properties of the foil, such as resistivity, relative permittivity, and charge decay, were examined. The elastic coating was made of natural rubber (NR), ensuring flexibility, while the outer structural layer was fabricated from PLA using a 3-D printing method. Two different shapes of the PLA-grid were examined: hexagonal and striped, to evaluate their influence on the electromechanical performance of the device. In the paper, the model and electro-mechanical properties of the transducer are presented. The electret foil was polarized using a high-voltage corona charging method. The maximal value of the piezoelectric coefficient, possible to obtain, was calculated using the described model, and it is equal to 𝑑 33MAX = 1.4 nC/N for a hexagonal structure and 0.87 nC/N for a striped one. That corresponds to the maximal value of effective charge density qsMAX = 7.9 mC/m2 limited by Paschen’s law. The measured static value of the piezoelectric coefficient 𝑑33 was up to 280 pC/N. The presented results demonstrate the potential of biodegradable piezoelectric transducers for sustainable and environmentally friendly applications in energy harvesting and sensor technologies.
Czasopismo
Rocznik
Tom
Strony
809--825
Opis fizyczny
Bibliogr. 36 poz., fot., rys., tab., wykr., wz.
Twórcy
autor
- Department of Electrical Engineering Fundamentals, Wroclaw University of Science and Technology, pl. Grunwaldzki 13, 50-377 Wroclaw, Poland
autor
- Faculty of Materials Engineering, Kazimierz Wielki University, ul. Chodkiewicza 30, 85-064 Bydgoszcz, Poland
autor
- Faculty of Materials Engineering, Kazimierz Wielki University, ul. Chodkiewicza 30, 85-064 Bydgoszcz, Poland
autor
- Department of Electrical Engineering Fundamentals, Wroclaw University of Science and Technology, pl. Grunwaldzki 13, 50-377 Wroclaw, Poland
Bibliografia
- [1] Ali M., Bathaei M. J., Istif E., Karimi S. N. H., Beker L., Biodegradable Piezoelectric Polymers: Recent Advancements in Materials and Applications, Advanced Healthcare Materials, vol. 12, no. 23, pp. 1–32 (2023), DOI: 10.1002/adhm.202300318.
- [2] Panda S., Hajra S., Mistewicz K., In-na P., Sahu M., Rajaitha P. M., Kim H. J., Piezoelectric energy harvesting systems for biomedical applications, Nano Energy, vol. 100, no. April, 107514 (2022), DOI: 10.1016/j.nanoen.2022.107514.
- [3] Maamer B., Jaziri N., Said M. H., Tounsi F., High-displacement electret-based energy harvesting system for powering leadless pacemakers from heartbeats, Archives of Electrical Engineering, vol. 72, no. 1, pp. 229–238 (2023), DOI: 10.24425/aee.2023.143699.
- [4] Altmann A. A., Souissi F., Ben Dali O., Suppelt S., Latsch B., Dorsam J. H., Zhukov S., Flachs D., Kupnik M., Flexible 3D Printed Ferroelectret Sensors Integrated into Smart Textiles for Unobtrusive Monitoring, FLEPS 2024 – IEEE International Conference on Flexible and Printable Sensors and Systems, Tampere, Finland (2024), DOI: 10.1109/FLEPS61194.2024.10604067.
- [5] Hayano J., Yamamoto H., Tanaka H., Yuda E., Piezoelectric rubber sheet sensor: a promising tool for home sleep apnea testing, Sleep and Breathing, vol. 28, no. 3, pp. 1273–1283 (2024), DOI: 10.1007/s11325-024-02991-9.
- [6] Zhang J., Li R., Dong L., Ke Y., Liu C., Pei M., Hu K., Ruan J., Li J., Yang F., Ultrasensitive biodegradable piezoelectric sensors with localized stress concentration strategy for real-time physiological monitoring, Chemical Engineering Journal, vol. 507, no. January, 160521 (2025), DOI: 10.1016/j.cej.2025.160521.
- [7] Ben Achour M. A., Rguiti M., Samuel C., Barrau S., Lacrampe M. -F., Courtois C., Energy harvesting by uniaxially-stretched poly ( lactide ) films at low tensile strain frequencies for powering wearable sensors: experimental results and theoretical extrapolation, Smart Materials and Structures, vol. 32, no. 075009, pp. 1–14 (2022), DOI: 10.1088/1361-665X/acd972.
- [8] Kacprzyk R., Grygorcewicz A., Piezoelectric transducer, Polish Patent PL no. 230284 (2018).
- [9] Qiu X., Gerhard R., Mellinger A., Turning polymer foams or polymer-film systems into ferroelectrets: Dielectric barrier discharges in voids, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 18, no. 1, pp. 34–42 (2011), DOI: 10.1109/TDEI.2011.5704490.
- [10] von Seggern H., Zhukov S., Dali O. Ben, Hartmann C., Sessler G. M., Kupnik M., Highly Efficient Piezoelectrets through Ultra-Soft Elastomeric Spacers, Polymers, vol. 13, no. 21, 3751 (2021), DOI: 10.3390/polym13213751.
- [11] Mirkowska A., Fabrication and properties of sandwich dielectric structures with piezoelectric response, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 31 no. 5, pp. 2275–2282 (2024), DOI: 10.1109/TDEI.2024.3398573.
- [12] Mirkowska A., Kacprzyk R., Rozmaryniewicz K., Piezoelectric Structure with a 3-D Printed Mesh Layer, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 29, no. 3, pp. 823–828 (2022), DOI: 10.1109/TDEI.2022.3168366.
- [13] Sellami Y., Ben Dali O., Chadda R., Zhukov S., Guermazi M., Altmann A. A., von Seggern H., Latsch B., Schafer N., Kupnik M., Piezoelectret Sensors from Direct 3D-Printing onto Bulk Films, Proceedings of IEEE Sensors, Vienna, Austria (2023), DOI: 10.1109/SENSORS56945.2023.10324862.
- [14] Electrical Properties of Plastic Materials, [online], available: https://www.professionalplastics.com/professionalplastics/ElectricalPropertiesofPlastics.pdf?srsltid=Af mBOorrQrwZdDDWFMifispZPenALfwhNh7M0KA15C4vOzVFDDOfNUb2, accessed: January 2025.
- [15] Sessler G. M., Electrets, Berlin: Springer-Verlag Berlin (1987), DOI: 10.1007/3-540-17335-8.
- [16] Gerhard-Multhaupt R., Less can be more, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 9, no. 5, pp. 850–859 (2002), DOI: 10.7748/ns.16.7.24.s40.
- [17] Ansari M. A., Somdee P., Piezoelectric Polymeric Foams as Flexible Energy Harvesters: A Review, Advanced Energy and Sustainability Research, vol. 3, no. 9 (2022), DOI: 10.1002/aesr.202200063.
- [18] Moreira M. M. A. C., Soares I. N., Assagra Y. A. O., Sousa F. S. I., Nordi T. M., Dourado D. M., Gounella R. H., Carmo J. P., Altafim R. A. C., Altafim R. A. P., Piezoelectrets: A Brief Introduction, IEEE Sensors Journal, vol. 21, no. 20, pp. 22317–22328 (2021), DOI: 10.1109/JSEN.2021.3096424.
- [19] Mohebbi A., Mighri F., Ajji A., Rodrigue D., Cellular Polymer Ferroelectret: A Review on Their Development and Their Piezoelectric Properties, Advances in Polymer Technology, vol. 37 no. 2, pp. 1–16 (2016), DOI: 10.1002/adv.21686.
- [20] Perna G., Bonacci F., Caponi S., Clementi G., Di Michele A., Gammaitoni L., Mattarelli M., Neri I., Puglia D., Cottone F., 3D-Printed Piezoelectret Based on Foamed Polylactic Acid for Energy-Harvesting and Sensing Applications, Nanomaterials, vol. 13, no. 22, pp. 1–15 (2023), DOI: 10.3390/nano13222953.
- [21] Urbaniak-Domagala W., Electrical properties of polylactides, Journal of Electrostatics, vol. 71, no. 3, pp. 456–461 (2013), DOI: 10.1016/j.elstat.2013.01.008.
- [22] Kamalova R. I., Minzagirova A. M., Galikhanov M. F., Spiridonova R. R., Guzhova A. A., Khairullin R. Z., Electret properties of polylactic acid – Montmorillonite composites, AIP Conference Proceedings, vol. 2174, no. 020026 (2019), DOI: 10.1063/1.5134177.
- [23] Zagidullina I. A., Galikhanov M. F., Kamalova R. I., Sharipova G. F., Khairullin R. Z., The study of the electret properties of polylactic acid and mineral fillers, AIP Conference Proceedings, vol. 2313, no. 050048 (2020), DOI: 10.1063/5.0033479.
- [24] Flachs D., Zhukov S., Zech I., Schreck T., Belle S., von Seggern H. et al., Enzymatic Self-Degradable PLA-Based Electrets, Journal of Polymers and the Environment, vol. 32, pp. 3922–3932 (2024) DOI: 10.1007/s10924-024-03240-6.
- [25] Zhukov S., Ma X., von Seggern H., Sessler G. M., Dali Omar Ben, Kupnik M., Zhang X., Biodegradable cellular polylactic acid ferroelectrets with strong longitudinal and transverse piezoelectricity, Applied Physics Letters, vol. 117, no. 11 (2020), DOI: 10.1063/5.0023153.
- [26] Altmann A. A., Suppelt S., Ruhl M., Schaumann S., Latsch B., Dali Omar Ben, Zhukov S., Flachs D., Zhang X., Thielemann C., von Seggern H., Kupnik M., Monolithic Wideband Air-Coupled Ultrasonic Transducer Based on Additively Manufactured Ferroelectrets, 2024 IEEE Ultrasonics, Ferroelectrics, and Frequency Control Joint Symposium (UFFC-JS), Taipei, Taiwan, pp. 1–4 (2024), DOI: 10.1109/UFFCJS60046.2024.10793858.
- [27] Ma X., Qin Y., Zhou L., Hu Q., Xiang X., von Seggern H., Zhukov S., Altmann A. A., Kupnik M., Niu W., Zhang X., Fully degradable, highly sensitive pressure sensor based on bipolar electret for biomechanical signal monitoring, Materials Today Physics, vol. 49, no. November, 101597 (2024), DOI: 10.1016/j.mtphys.2024.101597.
- [28] Kacprzyk R., Motyl E., Gajewski J. B., Pasternak A., Piezoelectric properties of nonuniform electrets, Journal of Electrostatics, vol. 35, no. 2–3, pp. 161–166 (1995), DOI: 10.1016/0304-3886(95)00034-8.
- [29] Timoshenko S., Woinowsky-Krieger S., Theory of plates and shells, McGraw-Hill Book Company (1987), DOI: 10.1016/0006-8993(74)90278-9.
- [30] Puszczykowska N., Rytlewski P., Macko M., Fiedurek K., Janczak K., Riboflavin as a Biodegradable Functional Additive for Thermoplastic Polymers, Environments – MDPI, vol. 9, no. 5 (2022), DOI: 10.3390/environments9050056.
- [31] Zhukov S., Eder-Goy D., Fedosov S., Xu B.-X., von Seggern H., Analytical prediction of the piezoelectric d33 response of fluoropolymer arrays with tubular air channels, Scientific Reports, vol. 8, no. 1, pp. 1–10 (2018), DOI: 10.1038/s41598-018-22918-1.
- [32] Hilczer B., Małecki J., Electrets and piezopolymers (in Polish), Warszawa: Wydawnictwo Naukowe PWN (1992).
- [33] Lisowski M., Measurements of resistivity and dielectric permittivity of solid dielectrics, Oficyna Wydawnicza Politechniki Wrocławskiej (in Polish), Wrocław (2004).
- [34] Kacprzyk R., Mirkowska A., Piezo-tubes, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 25, no. 3 (2018), DOI: 10.1109/TDEI.2017.006899.
- [35] Mellinger A., Charge Storage in Electret Polymers: Mechanisms, Characterization and Applications, Universitat Potsdam (1967).
- [36] Rychkov D., Kuznetsov A., Rychkov A., Electret properties of polyethylene and polytetrafluoroethylene films with chemically modified surface, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 18, no. 1, pp. 8–14 (2011), DOI: 10.1109/TDEI.2011.5704487.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-94984a0c-6eb7-429b-b1d3-d3af5fe4d295
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.