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Abstract: This paper investigates the robust soft variable struc-
ture (RSVS) control technique for perturbed singular systems with
constrained input control. The aim of the RSVS control law, in ad-
dition to achieving desirable control performance for the constrained
input, is the robust stability of the closed-loop system in the presence
of perturbation. In this paper, the RSVS control for perturbed sin-
gular systems is designed for two cases. First, it is assumed that the
perturbation term vanishes at the origin. In this case, the proposed
RSVS controller leads to asymptotic stabilization of the perturbed
singular system. In the second case, the perturbed singular systems
with non-vanishing perturbation are considered and the robustness
of RSVS is also investigated. In this situation, the proposed con-
troller guarantees practical stability of the perturbed singular sys-
tem. Finally, computer simulations are provided for two examples
to verify the theoretical results.

Keywords: singular systems; robust stabilization, vanishing
perturbation; non-vanishing perturbation

1. Introduction

Singular systems appear in the analysis of some practical systems and processes,
such as, for instance, power systems (Ayasun, Nwankpa and Kwatny, 2005),
aerospace engineering (Liu and Wen, 1997), processes related to petroleum
(Gani and Cameron, 1992), robot manipulation models (Krishnan and McClam-
roch, 1994), mechanical systems (You and Chen, 1993), as well as economic sys-
tems (Luenberger and Arbel, 1977). Singular systems are being referred to by
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different names like descriptor systems, generalized, algebraic-differential, semi-
state and implicit, which are compositions of algebraic and dynamic equations
(Dai, 1989). These systems, which have relatively more general structure in
comparison with non-singular systems, are also more sophisticated and special
theories have been developed for dealing with them, matching appropriately
their complexity. In short, they should be solved by different methods.

During the past two decades, numerous researchers have been studying sin-
gular systems (Asadinia and Binazadeh, 2017; Dai, 1989; Yang et al., 2018,
Jafari, Binazadeh, 2017). Some considerations include the issues of solvability,
stability, controllability and observability conditions for singular systems (Ishi-
hara and Terra, 2002; Men, Zhang, Li, Yang and Chen, 2006; Wu, Duan and
Zhou, 2008; Duan, Wu and Zhang, 2012; Zhang and Yu, 2016). The robust
stability and robust stabilization for uncertain singular systems have been an-
alyzed by Asadinia and Binazadeh (2016), Zhang and Yang (2003), Xu, Van
Dooren, Stefan and Lam (2002), Lu, Su, Xue and Chu (2008), Xu and Lam
(2006). Also, optimal control of singular systems has been discussed in Bal-
asubramaniam, Abdul Samath and Kumaresan (2007), Lin and Yang (1988),
Shu and Zhu (2017).

On the other hand, a great deal of research has been reported in relation
to the analysis and design methods for nonlinear singular systems. For exam-
ple: the stability of nonlinear singular systems was analyzed in Yang, Zhang
and Zhou (2013), Yang, Sun, Zhang and Ma (2013), Yang, Zhang, Lin and
Zhou (2006), and nonlinear control techniques, such as sliding mode, feedback
linearization and variable structure control have been designed for these sys-
tems (see Wu and Zheng, 2009; Lin, 2012; Liu and Wen, 1988; Guo and Gao,
2007; Wu and Ho, 2010; Xiaoping and Celikovsky, 1997). One of the advanced
nonlinear control strategies, which has been applied for singular systems is soft
variable structure control (consult Liu, Zhang and Gao, 2012; Liu, Kao, Gu and
Karimi, 2015).

Soft variable structure control (SVSC) is a kind of variable structure control
lacking sliding mode. It offers numerous benefits, such as achieving high regu-
lation rates, shortening of settling times and little system chattering. In SVSC,
controller parameter values or structures are continuously varying (Adamy and
Flemming, 2004). In Liu, Zhang and Gao (2012) and Liu, Kao, Gu and Karimi
(2015), the SVSC has been proposed for the nominal singular system and there-
fore the analysis of robust stabilization for the applied control law has not been
presented.

However, let us add in this context, that in practice it is not realistic to
assume that mathematical model is an exact description of a physical system.
At best, a model can be an approximation of a real system. The difference
between the mathematical model and the true system can be modeled through
perturbation terms. The perturbation terms could result from modeling errors,
aging, or uncertainties and disturbances, which exist in any realistic problem
(Marquez, 2013). Therefore, in order to guarantee the robust stabilization of the
perturbed systems, explicit consideration of the perturbation terms is necessary.
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In this paper, a class of singular systems under vanishing and non-vanishing
perturbations is considered and the robust version of soft variable structure
control (called RSVS) is extended for these systems. To the best of authors’
knowledge, this subject has not been studied in the literature. In the case when
perturbation terms are vanishing, it is demonstrated that the RSVS controller
leads to asymptotical stability of the closed-loop perturbed system. However,
designing of controller for perturbed singular systems under non-vanishing per-
turbation results only in what is called practical stability. In this situation, the
best one can expect is that the state variables be ultimately bounded by small
bound.

The scheme of content of this paper is as follows. The singular systems’
definition and some preliminaries are given in Section 2. Problem statement
and aims of the paper are presented in Section 3. The main results, concerning
the design of the RSVS controller for singular systems under vanishing pertur-
bations, are discussed in Section 4. The robustness of soft variable structure
control for singular systems in the presence of non-vanishing perturbations is
investigated in Section 5. Additionally, two examples are provided to show the
effectiveness of the proposed controller in Section 6. Finally, conclusions are
given in Section 7.

2. Preliminaries

Consider the following singular system:

Eẋ(t) = Ax(t) + bu(t) (1)

where x ∈ Rn is the state vector, u ∈ R is the input vector, A,E ∈ Rn×n are
constant matrices, b ∈ Rn is a constant vector, and rank(E) = r < n.

Definition 1 (Xu and Lam, 2006):
1. The pair (E,A) is said to be regular, if det(sE−A) is not identically zero

for any s ∈ C, where C is regarded as the complex plane.
2. The pair (E,A) is called impulse-free, if det(sE −A) = rank(E).
3. The pair (E,A) is said stable, if all the roots of det(sE − A) = 0 have

negative real parts.
4. The pair (E,A) is said admissible, if it is regular, impulse-free and stable.

Definition 2 (Dai, 1989): The singular system (1) is called controllable if, for
any t1 > 0, x(0) ∈ Rn and w ∈ Rn, there exists a control input u(t) such that
x(t1) = w.

Lemma 1 (Dai, 1989) The singular system (1) is completely controllable if and
only if for any s ∈ C, it holds that:

rank
[

sE −A b
]

= n

and

rank
[

E b
]

= n.
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Lemma 2 (Zhang and Yang, 2003) The singular system (1) is admissible if and
only if there exists a solution R ∈ Rn to the Lyapunov equation:

ATR+RTA = −Q (2)

satisfying

ETR = RTE ≥ 0 (3)

for any positive-definite Q.

3. Problem definition

Consider a perturbed singular system as follows:

Eẋ(t) = Ax(t) + bu(t) + d(x, t) (4)

where x ∈ Rnis the state vector, u ∈ R is the input vector and d(x, t) : D ×
[0,∞) → Rn is the perturbation vector, which is piecewise continuous in t and
locally Lipschitz in x on D ⊆ Rn, where D is a domain that contains the
origin. The perturbation vector d(x, t) might result from the modeling errors or
uncertainties and disturbances, which exist in any practical system. In a topical
situation, the nonlinear function d(x, t) is not known, but some information
about its upper bound is available.

In this paper, the robust soft variable structure control (RSVS) for the per-
turbed singular system (4) is designed, satisfying the following constraint:

|u| ≤ umax, (5)

where umax > 0 is the maximum allowable amplitude of input, due to actuator
saturation. In this paper, the procedure of robust controller designing is inves-
tigated for two cases. First, it is assumed that the perturbation term d(x, t)
vanishes at the origin (i.e. d(0, t) = 0 ∀t ≥ 0). In this situation, the perturbed
singular system (4) has an equilibrium point at the origin. Therefore, the RSVS
controller, which will be proposed, guarantees the asymptotical stability of the
closed-loop perturbed singular system. In the second case, it is assumed that
d(0, t) 6= 0 and an RSVS controller is designed for the singular system with non-
vanishing perturbation. In this case, the perturbed singular system (4) has no
equilibrium point. Therefore, in this case, it cannot be expected that x(t) → 0
as t → ∞. The best thing that can be expected is that ‖x(t)‖ be ultimately
bounded by an appropriately small bound, which corresponds to the concept
of practical stability. Thus, the designed RSVS controller leads to practical
stabilization of the perturbed singular system (4).

4. RSVS control design for singular systems with vanish-

ing perturbations

In this section, the singular system (4) is considered under the assumption of
vanishing perturbation. The RSVS control law, which guarantees the asymp-
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totical stability of the closed-loop perturbed singular system is presented in the
following theorem.

Theorem 1 Consider the perturbed singular system (4). Suppose the perturba-
tion term d(x, t) satisfies:

‖d(x, t)‖ ≤ γ ‖x‖ , d(0, t) = 0, ∀t ≥ 0, ∀x ∈ D (6)

where γ is a known positive constant. Then, the following RSVS control law

u(t) = − (g + p(t)h)T x(t) (7)

with the following differential equation

ṗ(t) =
xT (t)R̂T bhTx(t)− p(t)S(x, p)

r
(8)

guarantees asymptotical stabilization of the perturbed singular system (4) if the
matrix satisfies the following condition:

λmax(R̂) <
λmin(Q̂)

2γ
(9)

where the vector g ∈ Rn is chosen in such a way that the pair (Â = A− bgT , E)
is admissible, also the vector h ∈ Rn is selected so as to ensure better dynamic
quality. The parameter p(t) is determined by Eq. (9). Moreover, r is a positive
constant and S(x, p) is a positive function. Additionally, R̂&Q̂ ∈ Rn×n are
positive-definite matrices, which satisfy the singular Lyapunov equation

ÂT R̂ + R̂Â = −Q̂

with constraint ET R̂ = R̂TE ≥ 0, and λmin and λmax denote the minimum and
maximum eigenvalues, respectively.

Proof: By substituting control law (7) into (4) and considering (8), total state

equations of the perturbed singular system become as follows
{

Eẋ(t) = (Â− pbhT )x(t) + d(x, t)

ṗ(t) = xT (t)R̂T bhTx(t)−pS(x,p)
r

(10)

The perturbed singular system (10) has a unique equilibrium point in the
origin,

[

xT , p
]

= [0, 0]. Consider the following function as a Lyapunov function
candidate:

V (x, p) = xTET R̂x+ rp2 (11)

By Lemma 2 and since the pair (Â, E) is admissible, there exists a positive-
definite matrix R̂ for an arbitrarily positive-definite matrix Q̂, such that

ÂT R̂+ R̂T Â = −Q̂ (12)
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ET R̂ = R̂TE ≥ 0. (13)

The derivation of V (x, p) along the trajectories of (10) is given by:

V̇ = ẋTET R̂x+ xTET R̂ẋ+ 2rpṗ =
(

(Â− pbhT )x+ d(x, t)
)T

R̂x

+xT R̂T
(

(Â− pbhT )x + d(x, t)
)

+ 2rpxT R̂T bhT x−pS(x,p)
r

= xT (ÂT R̂+ R̂T Â)x+ 2xT R̂Td(x, t)− 2p2S(x, p).

Considering (12), one has:

V̇ = −xT Q̂x + 2xT R̂Td(x, t) − 2p2S(x, p). (14)

Since S(x, p) > 0, R̂ > 0 and ‖d(x, t)‖ ≤ γ ‖x‖, we obtain:

V̇ ≤ −λmin(Q̂) ‖x‖2 + 2λmax(R̂) ‖x‖ ‖d(x, t)‖
≤ −λmin(Q̂) ‖x‖22 + 2γ λmax(R̂) ‖x‖2 = −(λmin(Q̂)− 2γ λmax(R̂)) ‖x‖2 . (15)

Hence, the origin is a robustly asymptotically stable point of the closed-loop
system (10) if (λmin(Q̂)− 2γ λmax(R̂)) > 0, or, in another way of stating this:

λmax(R̂) <
λmin(Q̂)

2γ
. (16)

The matrix R̂ is given by computing the singular Lyapunov equation (12) in
such a way as to satisfy both conditions (12) and (13). The solution R̂ may be
found by linear matrix inequality (LMI) method. ✷

Remark 1 The RSVS control law (7) guarantees asymptotical stability of the
perturbed singular system (10) for any S(x, p) > 0. However, this control law
should satisfy the condition of constrained input (5). Thus, the function S(x, p)
should be designed so as to ensure compliance with condition (5).

From condition (5), one has:

−umax ≤ −(g + ph)Tx ≤ umax. (17)

From the above inequality, one can compute the admissible range of the selection

parameter p as follows:

{

−gT x−umax

hTx
≤ p ≤ −gT x+umax

hT x
, hTx > 0

−gT x+umax

hTx
≤ p ≤ −gT x−umax

hT x
, hTx < 0

. (18)

The selection parameter p will be infinite, when x → 0. Hence, the additional
restriction on p(t) is assumed as follows

−p1 ≤ p(t) ≤ p2 (19)
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where p1 and p2 are positive constants. Combining (18) and (19) leads to:

α(x(t)) ≤ p(t) ≤ β(x(t)) (20)

where α(x) and β(x) are functions of the state variables and are defined by
following formulas (Adamy and Flemming, 2004):

α(x) =















−gT x+umax

hTx
, hTx ≤ gT x−umax

p1

−p1,
gT x1−umax

p1

< hTx < gT x+umax

p1

−gT x−umax

hT x
, hTx ≥ gT x+umax

p1

(21)

β(x) =















−gT x−umax

hT x
, hTx ≤ −gT x−umax

p2

p2,
−gT x−umax

p2

< hTx < −gT x+umax

p2

−gT x+umax

hTx
, hTx ≥ −gT x+umax

p2

. (22)

Figure 1. Functions α(x) and β(x) (Adamy and Flemming, 2004)

Figure 1 shows the plots of the functions α(x) and β(x) for a single variable x.
A suitable choice for S(x, p) is as follows:

S(x, p) =











η1(1 − α(x)
p

) + η2
α(x)
p

, p ≤ α(x)

η2, α(x) < p < β(x)

η1(1 − β(x)
p

) + η2
β(x)
p

, p ≥ β(x)

(23)

where η1 >> 1, 0 < η2 << 1. Using (21) and (22), it can be shown that
inequality S(x, p) > 0 is satisfied. Consequently, the perturbed singular system
(4) is asymptotically stabilizable by the control law (7).
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5. RSVS control for singular systems with non-vanishing

perturbations

In this case, the more general situation, that of d(0, t) 6= 0, is considered, where
the origin may not be an equilibrium point of the perturbed system (4). In
the following, a theorem is given, which establishes the practical stability of the
closed-loop system with control law (7).

Theorem 2 Consider the perturbed singular system (4). Suppose the perturba-
tion term d(x, t) satisfies:

‖d(x, t)‖ ≤ δ, d(0, t) 6= 0, ∀t ≥ 0, ∀x ∈ D (24)

where δ is a known positive constant. The robust control law (7) with differential
equation (8) guarantees the robust practical stabilization of the perturbed singular
system (4) with non-vanishing perturbation d(x, t), in the region

‖x‖ ≥ 2δλmax(R̂)/θλmin(Q̂) (25)

where 0 < θ < 1, and matrix R̂ is found from the singular Lyapunov equation
(12) for any arbitrary positive-definite matrix Q̂.

Proof: Use V (x, p), proposed in (11), as the Lyapunov function candidate.
Then, the derivative of V (x, p) along the trajectories of (10) satisfies

V̇ = ẋTET R̂x+ xTET R̂ẋ+ 2rpṗ = (Eẋ)T R̂x+ xT R̂TEẋ+ 2rpṗ

=
(

(Â− pbhT )x + d(x, t)
)T

R̂x+ xT R̂T
(

(Â− pbhT )x+ d(x, t)
)

+2rp
(

xT R̂T bhT x−pS(x,p)
r

)

.

(26)

One has

V̇ = xT (ÂT R̂+ R̂T Â)x− 2pxT R̂T bhTx+ 2xT R̂Td(x, t)

+2pxT R̂T bhTx− 2p2S(x, p)

= −xT Q̂x+ 2xT R̂Td(x, t) − 2p2S(x, p) (27)

where the matrix R̂ is obtained from solving the Lyapunov equation (12) so as
to ensure satisfaction of ET R̂ = R̂TE ≥ 0, and S(x, p) is defined according to
formula (23). Therefore:

V̇ ≤ −λmin(Q̂) ‖x‖2 + 2λmax(R̂) ‖x‖ ‖d(x, t)‖

= −(1− θ)λmin(Q̂) ‖x‖2 − θλmin(Q̂) ‖x‖2 + 2λmax(R̂) ‖x‖ δ
(28)

where 0 < θ < 1 is a positive constant. If the term
(

−θλmin(Q̂) ‖x‖2 + 2λmax(R̂) ‖x‖ δ
)
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is negative definite, or, in other formulation,

‖x‖ ≥ 2δλmax(R̂)/θλmin(Q̂),

then:

V̇ ≤ −(1− θ)λmin(Q̂) ‖x‖2 , ∀ ‖x‖ ≥ 2δλmax(R̂)/θλmin(Q̂). (29)

It can be seen from (29) that the trajectories of the state variables of the
closed-loop perturbed singular system (11) are bounded for all t ≥ 0 and the
robust practical stability of the singular system (4) under non-vanishing pertur-
bations is guaranteed by the proposed control law (7). ✷

6. Computer simulations

In this section, two illustrative examples will be presented, meant to show the
robust performance of the RSVS controller.

First Example: Consider the following perturbed singular system:

Eẋ(t) = Ax(t) + bu(t) + d(x, t) (30)

with the following specifications:

E =





1 1 1
5 7 −1
2 3 −1



 , A =





−1 0 1
1 −1 0
0 −5 0



 ,

b =





0
0
1



 , d(t, x) =





µ1x1 sinx2

µ2x2

0





(31)

where µ1 and µ2 are unknown constants, with |µ1| ≤ 1; |µ2| ≤ 0.5. The control
input is confined to the range

|u| ≤ umax = 20. (32)

From the given information about the perturbation term, one has:

‖d‖ =
√

µ2
1x

2
1 sin

2 x2 + µ2
2x

2
2

≤
√

x2
1 + 0.25x2

2

≤
√

x2
1 + 0.25x2

2 ≤ ‖x‖ .

(33)

Therefore, the value of the constant number γ in condition (6) is γ = 1. Also,
vectors gT =

[

5 5 10
]

and hT =
[

0 −8 1
]

have been chosen. Thus,
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the matrix for the Lyapunov equation (12) such that it satisfies conditions (13)
and (16) has been found by LMI as

R̂ =





0.250 0.003 −0.009
0.003 0.040 −0.006

−0.009 −0.006 0.061



 .

For the above matrix R̂, λmax(R̂) = 0.2391, which satisfies condition (16). Fi-
nally, the parameters η1 = 106, η2 = 10−2, p1 = p2 = 100 and r = 1 are chosen.
Then, the robust control law will be as follows:

u = −5x1 − 5(1− p)x2 − 2(5 + p)x3

with the following dynamic equation:

ṗ = 2.95× 10−5x2
2 + 1.016× 10−4x2

3 + 4.1× 10−5x1x2

−1.64× 10−5x1x3 − 2.658× 10−4x2x3 − 10−3pS(x, p)

where

S(x, p) =











106(1− α(x)
p

) + 10−2α(x)
p

, p ≤ α(x)

10−2, α(x) < p < β(x)

106(1− β(x)
p

) + 10−2 β(x)
p

, p ≥ β(x)

with the functions α(x) and β(x) being computed by equations (21) and (22).
The response of the states of the perturbed singular system (30) under the

designed RSVS controller for initial conditions x0 =
[

5 −1 −1
]T

are illus-
trated in Figs. 2 through 4. These figures verify the fact that the RSVS control
law leads to asymptotic stability of the perturbed singular system (30). Also,
Fig. 5 verifies that the proposed RSVS controller has met the condition of the
constrained input, (32).

Second Example: Consider the singular system (34) such that the pertur-
bation term d(x, t) is of the non-vanishing type and the specifications are as
follows.

Eẋ(t) = Ax(t) + bu(t) + d(x, t)

E =





1 1 1
5 7 −1
2 3 −1



 , A =





−1 0 1
1 −1 0
0 −5 0



 ,

b =





0
0
1



 , d(t, x) =





δ1(t) sinx1

δ2(t) cos t
0



 .

(34)
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Suppose that |δi(t)| ≤ 1 for i = 1, 2. Therefore:

‖d(x, t)‖ =
√

(δ1(t) sinx1)2 + (δ2(t) cos t)2 ≤
√
2.

Thus, δ =
√
2. The RSVS control law is applied to the perturbed singular system

(34) with initial conditions x0 = [5− 1− 1]T . Further, θ = 0.5 is considered,
and using R̂ and Q̂, which were proposed in Section 6.1, one obtains λmax(R̂) =
0.2387, λmin(Q̂) = 1.

Figures 6 through 8 illustrate the responses of the singular system (34) with
non-vanishing perturbations. As expected, the time responses of the state vari-
ables of the closed-loop singular system with non-vanishing perturbation con-
verge to a band in the neighborhood of the origin. Control input u(t) is presented
in Fig. 9. The simulation results verify the fact that the designed control law
leads to practical stabilization of the singular system in the presence of non-
vanishing perturbations.

Figure 2. Time response of x1(t) under vanishing perturbations

7. Conclusions

This paper considered the robust stabilization of the perturbed singular systems
consisting of vanishing and non-vanishing perturbations. For this purpose, the
robust soft variable structure controller for the perturbed singular systems in
the form of two theorems has been proposed. The first theorem proposed a
robust control law for asymptotical stabilization of the singular systems under
vanishing perturbations. Singular systems with non-vanishing perturbations
do not have the equilibrium point(s), therefore practical stability is the best
stability configuration for such systems. In the second theorem, the proposed
RSVS controller results in practical stability of the closed-loop singular system.
Finally, the effectiveness of the proposed technique was illustrated by computer
simulations.
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Figure 3. Time response of x2(t) under vanishing perturbations

Figure 4. Time response of x3(t) under vanishing perturbations

Figure 5. Time response of control input under vanishing perturbations
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Figure 6. Time response of x1(t) under non-vanishing perturbations

Figure 7. Time response of x2(t) under non-vanishing perturbations

Figure 8. Time response of x3(t) under non-vanishing perturbations
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Figure 9. Time response of control input under non-vanishing perturbations
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