Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A stable composition (against crystallization) of germanate glass doped with Yb3+ for mid-infrared laser applications is presented. Broad emission spectrum of Yb3+ was obtained for the fabricated glass. Laser operation was demonstrated in 13 mm long waveguide written in the glass using a femtosecond laser operating at 524 nm center wavelength sending 250 fs ultrashort pulses. The resulting CW laser operated at 1.04 μm in the fundamental mode of the waveguide. The propagation loss through the waveguide was 0.6 dB/cm at 1550 nm for 45 μm diameter of the modified structure. The mode analysis of the developed waveguide structure is also presented in COMSOL Multiphysics to study the electric field distribution through different modes of propagation in the waveguide and the confinement loss associated to them.
Czasopismo
Rocznik
Tom
Strony
75--85
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
- School of Engineering, University of South Australia
Bibliografia
- [1] SEDDON A.B., TANG Z., FURNISS D., SUJECKI S., BENSON T.M., Progress in rare-earth-doped mid-infrared fiber lasers, Optics Express 18(25), 2010, pp. 26704–26719, DOI:10.1364/OE.18.026704.
- [2] SIEGEL J., FERNÁNDEZ-NAVARRO J.M., GARCÍA-NAVARRO A., DIEZ-BLANCO V., SANZ O., SOLIS J., VEGA F., ARMENGOL J., Waveguide structures in heavy metal oxide glass written with femtosecond laser pulses above the critical self-focusing threshold, Applied Physics Letters 86(12), 2005, article 121109, DOI:10.1063/1.1888032.
- [3] JIANG X., LOUSTEAU J., RICHARDS B., JHA A., Investigation on germanium oxide-based glasses for infrared optical fibre development, Optical Materials 31(11), 2009, pp. 1701–1706, DOI:10.1016/j.optmat.2009.04.011.
- [4] FAN X., KUAN P., LI K., ZHANG L., LI D., HU L., Spectroscopic properties and quenching mechanism of 2 μm emission in Ho3+ doped germanate glasses and fibers, Optical Materials Express 5(6), 2015, pp. 1356–1365, DOI:10.1364/OME.5.001356.
- [5] XU R., PAN J., HU L., ZHANG J., 2.0 μm emission properties and energy transfer processes of Yb3+/Ho3+ codoped germanate glass, Journal of Applied Physics 108(4), 2010, article 043522, DOI:10.1063/1.3468726.
- [6] LIN Q., XIA H., ZHANG Y., WANG J., ZHANG J., HE S., Gain properties of germanate glasses singly doped with Tm3+ and Ho3+ ions, Journal of Rare Earths 27(1), 2009, pp. 76–82, DOI:10.1016/S1002-0721(08)60195-7.
- [7] RAGIN T., BARANOWSKA A., KOCHANOWICZ M., ZMOJDA J., MILUSKI P., DOROSZ D., Study of mid-infrared emission and structural properties of heavy metal oxide glass and optical fibre co-doped with Ho3+/Yb3+ ions, Materials 12(8), 2019, article 1238, DOI:10.3390/ma12081238.
- [8] WEBER M., MATSINGER B.H., DONLAN V.L., SURRATT G.T., Optical transition probabilities for trivalent holmium in LaF3 and YAlO3, The Journal of Chemical Physics 57(1), 1972, pp. 562–567, DOI:10.1063/1.1678000.
- [9] CAI M., ZHOU B., WANG F., TIAN Y., ZHOU J., XU S., ZHANG J., Highly efficient mid-infrared 2 μm emission in Ho3+/Yb3+-codoped germanate glass, Optical Materials Express 5(6), 2015, pp. 1431–1439, DOI:10.1364/OME.5.001431.
- [10] BALAJI S., SONTAKKE A.D., SEN R., KALYANDURG A., Efficient ~2.0 μm emission from Ho3+ doped tellurite glass sensitized by Yb3+ ions: Judd–Ofelt analysis and energy transfer mechanism, Optical Materials Express 1(2), 2011, pp. 138–150, DOI:10.1364/OME.1.000138.
- [11] KIR’YANOV A.V., BARMENKOV Y.O., MINKOVICH V.P., ANDRES M.V., Nonlinear transmission coefficient of ytterbium-holmium fiber at the wavelength 978 nm, Modern Trends in Laser Physics 17(2), 2007, pp. 71–79, DOI:10.1134/S1054660X07020041.
- [12] KHALID M., LANCASTER D.G., EBENDORFF-HEIDEPRIEM H., Spectroscopic analysis and laser simulations of Yb3+/Ho3+ co-doped lead-germanate glass, Optical Materials Express 10(11), 2020, pp. 2819–2833, DOI:10.1364/OME.404375.
- [13] HUANG F., LIU X., LI W., HU L., CHEN D., Energy transfer mechanism in Er3+ doped fluoride glass sensitized by Tm3+ or Ho3+ for 2.7μm emission, Chinese Optics Letters 12(5), 2014, article 051601.
- [14] KUAN P.-W., FAN X., LI X., LI D., LI K., ZHANG L., YU C., HU L., High-power 2.04 μm laser in an ultra-compact Ho-doped lead germanate fiber, Optics Letters 41(13), 2016, pp. 2899–2902, DOI:10.1364/OL.41.002899.
- [15] YANG B., LIU X., WANG X., ZHANG J., HU L., ZHANG L., Compositional dependence of room-temperature Stark splitting of Yb3+ in several popular glass systems, Optics Letters 39(7), 2014, pp. 1772–1774, DOI:10.1364/OL.39.001772.
- [16] EL-RABAIE S., TAHA T.A., HIGAZY A.A., Compositional dependence thermal and optical properties of a novel germanate glass, Physica B: Condensed Matter 432, 2014, pp. 40–44, DOI:10.1016/j.physb.2013.09.020.
- [17] GAN F., Optical and Spectroscopic Properties of Glasses 245, Shanghai Science and Technology Press, 1992.
- [18] SHAHRAAM AFSHAR V., WARREN-SMITH S.C., MONRO T.M., Enhancement of fluorescence-based sensing using microstructured optical fibres, Optics Express 15(26), 2007, pp. 17891–17901, DOI:10.1364/OE.15.017891.
- [19] KHALID M., CHEN G.Y., BEI J., EBENDORFF-HEIDEPRIEM H., LANCASTER D.G., Microchip and ultra-fast laser inscribed waveguide lasers in Yb3+ germanate glass, Optical Materials Express 9(8), 2019, pp. 3557–3564, DOI:10.1364/OME.9.003557.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9495008d-5072-4278-af32-47c95c2f586c