PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preparation and properties of nanocrystalline Ni/graphene composite coatings deposited by electrochemical method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents results of studies of composite nickel/graphene coatings produced by electrodeposition method on a steel substrate. The method of producing composite coatings with nanocrystalline nickel matrix and dispersion phase in the form of graphene is presented. For comparative purposes, the study also includes nano-crystalline Ni coatings produced by electrochemical reduction without built-in graphene flakes. Graphene was characterized by Raman spectroscopy, transmission and scanning electron microscopes. Results of studies on the structure and morphology of Ni and Ni/graphene layers produced in a bath containing different amounts of graphene are presented. Material of the coatings was characterized by SEM, light microscopy, X-ray diffraction. The microhardness of the coatings was examined by Knoop measurements. The adhesion of the coatings with the substrate was tested using a scratchtester. The influence of graphene on the structure and properties of composite coatings deposited from a bath with different graphene contents was determined.
Rocznik
Strony
29--34
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
  • Institute of Precision Mechanics, ul. Duchnicka 3, 01-796 Warsaw, Poland
autor
  • Institute of Precision Mechanics, ul. Duchnicka 3, 01-796 Warsaw, Poland
Bibliografia
  • 1. Wasekar, N.P. et al. (2016). Influence of mode of electrodeposition, current density and saccharin on the microstructure and hardness of electrodeposited nanocrystalline nickel coatings. Sur. & Coat. Technol.291, 130–140. DOI: 10.1016/j.surfcoat.2016.02.024.
  • 2. Jiang, S.W. et al. (2016). Electrodeposition of Ni-Al2O3 composite coatings with combined addition of SDS and HPB surfactants. Surf. & Coat. Technol. 286, 197–205. DOI: 10.1016/j.surfcoat.2015.12.028.
  • 3. Trzaska, M. & Cieślak, G. (2014). The structure and properties of nanocrystalline Ni/Al2O3 layers produced by electrocrystallization. Composites Theory and Practice 4, 203–207.
  • 4. Góral, A., Berent, K., Nowak, M. & Kania, B. (2016). Microstructure and properties of Ni and Ni/Al2O3 Coatings Electrodeposited at Various Current Densities. Arch. Metall. Mater. 61, 55–60. DOI: 10.1515/amm-2016-0001.
  • 5. Low, C.T.J. et al. (2010). Electrodeposition and tribological characterisation of nickel nanocomposite coatings reinforced with nanotubular titanates. Surf. & Coat. Technol. 205, 1856–1863. DOI: 10.1016/j.surfcoat.2010.08.054.
  • 6. Khalil, M.W. et al. (2015). Electrodeposition of Ni-GNS-TiO2 nanocomposite coatings as anticorrosion film for mild steel in neutral environment. Surf. & Coat. Technol. 275, 98–111. DOI: 10.1016/j.surfcoat.2015.05.033
  • 7. Szeptycka, B., Gajewska-Midziałek, A. & Babul, T. (2016). Electrodeposition and corrosion resistance of Ni-graphene composite coatings. J. Mater. Engine. Perfor. 25, 3134–3138. DOI: 10.1007/s11665-016-2009-4.
  • 8. Kumar, C.M.P. et al. (2013). Preparation and corrosion behavior of Ni and Ni–graphene composite coatings. Mater.Res. Bull. 48, 1477–1483. DOI: 10.1016/j.materresbull.2012.12.064.
  • 9. Chen, J. et al. (2016). Preparation and tribological behavior of Ni-graphene composite coating under room temperature. Appl. Surf. Sci. 361, 49–56. DOI: 10.1016/j.apsusc.2015.11.094.
  • 10. Cieślak, G. & Trzaska, M. (2016). Tribological properties of nanocomposite Ni/graphene coatings produced by electrochemical reduction method. Composites: Theory and Practice 2, 79–83.
  • 11. Buczko, Z. et al. (2016). Electrochemical copper composite coatings with Graphene as a dispersion phase. Inżynieria Powierzchni (Surface Engineering) 1, 56–61.
  • 12. Cieślak, G., Mazurek, A. & Trzaska, M. (2015). Composite layers of Ni/graphene produced by electrochemical reduction method. Inżynieria Powierzchni (Surface Engineering), 3, 44–47 (in Polish).
  • 13. Oleszak, D. & Olszyna, A. (2004). Crystallite size and lattice strain determination of Nial-Al2O3 nanocomposite from x-ray diffraction line broadening. Composites: Theory and Practice 4, 284–288 (in Polish).
  • 14. Cheap Tubes Inc. Retrieved June, 2017, from https://www.cheaptubes.com.
  • 15. Dong, L.X. & Chen, Q. (2010). Properties, synthesis, and characterization of graphene. Front. Mater. Sci. China 4 (1), 45–51. DOI: 10.1007/s11706-010-0014-3.
  • 16. Ferrari, A.C. (2007). Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Communications 143, 47–57. DOI: 10.1016/j.ssc.2007.03.052.
  • 17. Szczygieł, B. (1999). Studium nad otrzymywaniem i właściwościami elektrolitycznych warstw dyspersyjnych niklu z węglikiem krzemu. Wrocław: Oficyna Wydawnicza Politechniki Wrocławskiej (in Polish).
  • 18. Łągiewka, E. & Budniok, A. (2010). Struktura, właściwości i metody badań materiałów otrzymanych elektrolitycznie. Katowice, Wydawnictwo Uniwersytetu Śląskiego (in Polish).
  • 19. Hovestad, A. & Janssen, L.J. (1995). Electrochemical codeposition of inert particles in a metallic matrix. J. Appl. Electrochem. 25, 519–527. DOI: 10.1007/BF00573209.
  • 20. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V. & Firsov, A.A. (2004). Electric Field Effect in Atomically Thin Carbon Films. Science 306, 666–669, DOI: 10.1126/science.1102896.
  • 21. Chronowska-Przywara, K. & Kot, M. (2014). Effect of scratch test parameters on the deformation and fracture of coating-substrate systems (in Polish). Tribologia 2, 19–29.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-949370d9-c488-4f65-af91-1451795d5ef4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.