Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the modern geodesy the role of the permanent station is growing constantly. The proper treatment of the time series from such station lead to the determination of the reliable velocities. In this paper we focused on some pre-analysis as well as analysis issues, which have to be performed upon the time series of the North, East and Up components and showed the best, in our opinion, methods of determination of periodicities (by means of Singular Spectrum Analysis) and spatio-temporal correlations (Principal Component Analysis), that still exist in the time series despite modelling. Finally, the velocities of the selected European permanent stations with the associated errors determined following power-law assumption in the stochastic part is presented.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
17--26
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr.
Twórcy
autor
- Institute of Geodesy, Faculty of Civil Engineering and Geodesy, Military University of Technology, Kaliskiego St. 2, 00-908, Warsaw, Poland
autor
- Institute of Geodesy, Faculty of Civil Engineering and Geodesy, Military University of Technology, Kaliskiego St. 2, 00-908, Warsaw, Poland
autor
- Institute of Geodesy, Faculty of Civil Engineering and Geodesy, Military University of Technology, Kaliskiego St. 2, 00-908, Warsaw, Poland
autor
- Institute of Geodesy, Faculty of Civil Engineering and Geodesy, Military University of Technology, Kaliskiego St. 2, 00-908, Warsaw, Poland
Bibliografia
- [1] Agnew, D.C. (1992). The time-domain behaviour of power-law noises. Geophysical Research Letters, 19(4), pp. 333-336.
- [2] Agnew, D.C., & Larson K.M. (2007). Finding the repeat times of the GPS constellation. GPS Solutions, 11(1), pp. 71-76, doi:10.1007/s10291-006-0038-4.
- [3] Altamimi, Z., Collilieux, X., & Metivier, L. (2011). ITRF2008: an improved solution of the international terrestrial reference frame. Journal of Geodesy, vol. 85, pp. 457-473, DOI: 10.1007/s00190-011-0444-4.
- [4] Amiri-Simkooei, A.R. (2013). On the nature of GPS draconitic year periodic pattern in multivariate position time series. Journal of Geophysical Research, Solid Earth, 118(5), pp. 2500-2511, doi:10.1002/jgrb.50199.
- [5] Caporali, A., Neubauer, F., Ostini, L., Stangl, G., & Zuliani, D. (2013). Modeling surface GPS velocities in the Southern and Eastern Alps by finite dislocations at crustal depths. Tectonophysics 590 (2013) pp. 136-150, doi: 10.1016/j.tecto.2013.01.016.
- [6] Chen, Q., van Dam, T., Sneeuw, N., Collilieux, C., Weigelt, M., & Rebischung, P. (2013). Singular spectrum analysis for modeling seasonal signal from GPS time series. Journal of Geodynamics 72, 25-35. DOI: 10.1016/j.jog.2013.05.005.
- [7] Blewitt, G., & Lavallée, D. (2002). Effect of annual signals on geodetic velocity. Journal of Geophysical Research, 107(B7), pp. 2145, doi:10.1029/2001JB000570.
- [8] Bogusz, J., Gruszczynska, M., Klos, A., & Gruszczynski M. (2015). Non-parametric estimation of seasonal variations in GPS-derived time series. Springer IAG Symposium Series volume 146, proceedings of the REFAG 2014, DOI: 10.1007/1345_2015_191.
- [9] Bogusz, J., Gruszczynski, M., Figurski, M., & Klos, A. (2015). Spatio-temporal filtering for determination of common mode error in regional GNSS networks. Open Geosciences, 2015; 7, pp. 140-148, DOI: 10.1515/geo-2015-0021.
- [10] Bogusz, J., & Klos, A. (2015). On the significance of periodic signals in noise analysis of GPS station coordinates time series. GPS Solutions, DOI: 10.1007/s10291-015-0478-9.
- [11] Bogusz, J., Klos, A., Figurski, M., Jarosinski, M., & Kontny, B. (2013). Investigation of the reliability of local strain analysis by the triangle modelling. Acta Geodynamica et Geomaterialia, Vol. 10, No. 3(171), pp. 293-305, 2013, DOI: 10.13168/AGG.2013.0029.
- [12] Bogusz, J., Klos, A., Grzempowski, P., & Kontny, B. (2014). Modelling velocity field in regular grid on the area of Poland on the basis of the velocities of European permanent stations. Pure and Applied Geophysics, Volume 171, Issue 6 (2014), pp. 809-833, DOI: 10.1007/s00024-013-0645-2.
- [13] Bos, M., Bastos, L., & Fernandes, R.M.S. (2010). The influence of seasonal signals on the estimation of the tectonic motion in short continuous GPS time-series. Journal of Geodynamics, 49, pp. 205-209, DOI: 10.1016/j.jog.2009.10.005.
- [14] Broomhead, D., & King, G.P. (1986). Extracting qualitative dynamics from experimental data. Physica D: Nonlinear Phenomena, 20, No. 2-3, pp. 217-236. DOI: 10.1016/0167-2789(86)90031-X.
- [15] Bruyninx, C., Altamimi, Z., Caporali, A., Kenyeres, A., Lidberg, M., Stangl, G., & Torres, J.A. (2013). Guidelines for EUREF Densifications. Available electronically at ftp://epncb.oma.be/pub/general/. Downloaded on 18.04.2016.
- [16] Dong, D., Fang P., Bock Y., Webb F., Prawirodirdjo L., Kedar S., $ Jamason P. (2006). Spatio-temporal filtering using principal component analysis and Karhunen-Loeve expansion approaches for regional GPS network analysis. Journal of Geophysical Research, 111, B03405, DOI:10.1029/2005JB003806.
- [17] Freymueller, J.T. (2009). Seasonal position variations and regional reference frame realization. In: Bosch W, Drewes H (eds) GRF2006 symposium proceedings. Springer IAG Symposium Series, Berlin, pp 191-196.
- [18] Ghil, M., & Taricco, C. (1997). Advanced spectral analysis methods. Past and Present Variability of Solar-Terrestrial System: Measurement, Data Analysis and Theoretical Models, pp. 137-159.
- [19] Gruszczynska, M., Klos, A., Gruszczynski, M., & Bogusz, J. (2016). Investigation on time-changeable seasonal components in the GPS time series: case study of Central Europe. Acta Geodynamica et Geomaterialia, 13, No. 3 (183), pp. 281-289, DOI: 10.13168/AGG.2016.0010.
- [20] Gruszczynski, M., Klos, A., & Bogusz, J. (2016). Orthogonal transformation in extracting of common mode errors from continuous GPS networks. Acta Geodynamica et Geomaterialia, 13, No. 3 (183), pp. 291-298, 2016. DOI: 10.13168/AGG.2016.0011.
- [21] Kenyeres, A., & Brunyninx, C. (2009). Noise and periodic terms in the EPN time series. Geodetic Reference Frames, Springer IAG Symposium Series volume 134, 2009, 143-148, DOI: 10.1007/978-3-642-00860-3_22.
- [22] Klos, A., Bogusz, J., Figurski, M., & Kosek, W. (2015). On the handling of outliers in the GNSS time series by means of the noise and probability analysis. Springer IAG Symposium Series volume 143, proceedings of the IAG Scientific Assembly 2013, DOI: 10.1007/1345_2015_78.
- [23] Klos, A., Olivares, G., Teferle, F.N., & Bogusz, J. (2016). The combined effect of periodic signals and noise on the dilution of precision of GNSS station velocity uncertainties. Submitted to the GPS Solutions.
- [24] Langbein, J., & Johnson, H. (1997). Correlated errors in geodetic time series: Implications for time-dependent deformation. Journal of Geophysical Research, vol. 102, No. B1, pp. 591-603. January 10, 1997.
- [25] Penna, N.T., & Stewart, M.P. (2003). Aliased tidal signatures in continuous GPS height time series. Geophysical Research Letters 30(23):2184. doi:10.1029/2003GL018828.
- [26] Plag, H.-P., & Pearlman M. (2009). Global Geodetic Observing System. Meeting the Requirements of a Global Society on a Changing Planet in 2020. ISBN 978-3-642-02686-7 e-ISBN 978-3-642-02687-4, DOI: 10.1007/978-3-642-02687-4, Springer Dordrecht Heidelberg London New York, 2009.
- [27] Ray, J., Altamimi, Z., Collilieux, X., & van Dam, T. (2008). Anomalous harmonics in the spectra of GPS position estimates. GPS Solutions 12(1):55-64, doi:10.1007/s10291-007-0067-7.
- [28] Rebischung, P., Griffiths, J., Ray, J., Schmid, R., Collilieux, X., & Garayt, B. (2012). IGS08: the IGS realization of ITRF2008. GPS Solutions, Vol. 16 No 4 , pp. 483-494, doi: 10.1007/s10291-011-0248-2.
- [29] Rodionov, S., & Overland, J.E. (2005). Application of a sequential regime shift detection method to the Bering Sea ecosystem. ICES Journal of Marine Science, 62: 328-332, doi:10.1016/j.icesjms.2005.01.013.
- [30] Santamaría-Gómez, A., Bouin, M.N., Collilieux, X., & Woppelmann, G. (2011). Correlated errors in GPS position time series: Implications for velocity estimates. Journal of Geophysical Research, 116(B1), B01405, doi:10.1029/2010JB007701.
- [31] Schenk, V., & Schenková, Z. (2013). To crustal deformation modeling of the west bohemia Swarm area, Central Europe. Acta Geodynamica et Geomaterialia, Vol. 10, No. 1 (169), pp. 41-45, 2013.
- [32] Vautard, R., Yiou, P., & Ghil, M. (1992). Singular-spectrum analysis: a toolkit for short, noisy chaotic signals. Physica D: Nonlinear Phenomena, 58, No. 1-4, 95-125. DOI: 10.1016/0167-2789(92)90103-T.
- [33] Wdowinski, S., Bock, Y., Zhang, J., Fang, P., & Genrich J. (1997). Southern California permanent GPS geodetic array: Spatial filtering of daily positions for estimating coseismic and postseismic displacements induced by the 1992 Landers earthquake. Journal of Geophysical Research, 102(B8), pp. 18057-18070, DOI:10.1029/97JB01378.
- [34] Wessel, P., Smith, W.H.F., Scharroo, R., Luis, J., & Wobbe, F. (2013). Generic Mapping Tools: Improved Version Released. EOS, Transactions, American Geophysical Union Volume 94, Issue 45, 5 November 2013, pp. 409-410. DOI: 10.1002/2013EO450001.
- [35] Williams S.D.P., Bock Y., Fang P., Jamason P., Nikolaidis R.M., Prawirodirdjo L., Miller M., & Johnson, D., (2004). Error analysis of continuous GPS position time series. Journal of Geophysical Research, 109, B03412, DOI: 10.1029/2003JB002741, 2004.
- [36] Zerbini, S., Raicich, F., Errico, M., & Cappello, G. (2013). An EOF and SVD analysis of interannual variability of GPS coordinates, environmental parameters and space gravity data. Journal of Geodynamics 67 (2013) 111-124. DOI: 10.1016/j.jog.2012.04.006.
- [37] Zhang, J., Bock, Y., Johnson, H., Fang, P., Williams, S., Genrich, J., Wdowinski, S., & Behr, J. (1997). Southern California Permanent GPS Geodetic Array: Error analysis of daily position estimates and site velocities. Journal of Geophysical Research, 102, pp. 18,035-18,055.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-948c3c21-179d-4cb0-ba82-137696170866