PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling and research of methods for speed and torque control of DC motors

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Modelowanie i badanie metod sterowania prędkością oraz momentem obrotowym silników prądu stałego
Języki publikacji
EN
Abstrakty
EN
The analysis ways of speed control and torque of the collectorless electric motor is executed. A mathematical model by SAC with an operational amplifier in the SCILAB / XCOS package has been developed. Modeling and research of quality of work of the electric motor with various types of regulators is carried out. On the basis of the conducted studies, the optimal parameters of the PID controller were selected. Recommendations for the use of engines with various types of regulators have been developed
PL
Przeprowadzono analizę sposobów regulacji prędkości i momentu obrotowego bezkolektorowego silnika elektrycznego. Opracowano model matematyczny przez SAC ze wzmacniaczem operacyjnym w pakiecie SCILAB / XCOS. Przeprowadzono modelowanie i badanie jakości pracy silnika elektrycznego z różnymi typami regulatorów. Na podstawie przeprowadzonych badań wybrano optymalne parametry regulatora PID. Opracowano zalecenia dotyczące eksploatacji silników z różnymi typami regulatorów
Rocznik
Strony
106--112
Opis fizyczny
Bibliogr. 46 poz., rys., tab.
Twórcy
  • Al-Balqa Applied University, Department of Electrical and Electronics Engineering, Al Salt 19117, Jordan
  • Al-Balqa Applied University, Department of Electrical and Electronics Engineering, Al Salt 19117, Jordan
  • O.M. Beketov National University of Urban Economy in Kharkiv, Department of Electric transport, str. Marshala Bazhanova, 17, Kharkiv, 61002, Ukraine
  • O.M. Beketov National University of Urban Economy in Kharkiv, Department of Electric transport, str. Marshala Bazhanova, 17, Kharkiv, 61002, Ukraine
  • State Biotechnological University, Department of Electromechanics and Robotics, str. Rizdviana, 19, 61052 Kharkiv, Ukraine
  • State Biotechnological University, Department of Power Supply and Energy Management, str. Rizdviana, 19, 61052 Kharkiv, Ukraine
autor
  • Lviv National Agrarian University, Department of Cars and Tractors, str. Volodymyr Great,1, 80381 Dubliany, Ukraine
  • University of Agriculture in Krakow, Faculty of Production and Power Engineering, Balicka Av. 116B, 30-149 Krakow
  • Lviv National Agrarian University
Bibliografia
  • [1] Łukasik Z, Czaban A, Szafraniec A. Mathematical model of asynchronous pump drive with distributed mechanical parameters. Przegląd Elektrotechniczny, 2018, 6, 155-159. doi:10.15199/48.2018.06.32
  • [2] Manca, R.; Circosta, S.; Khan, I.; Feraco, S.; Luciani, S.; Amati, N.; Bonfitto, A.; Galluzzi, R. Performance Assessment of an Electric Power Steering System for Driverless Formula Student Vehicles. Actuators 2021, 10, 165. https://doi.org/10.3390/act10070165
  • [3] Carev, V.; Roháč, J.; Šipoš, M.; Schmirler, M. A. Multilayer Brushless DC Motor for Heavy Lift Drones. Energies 2021, 14, 2504. https://doi.org/10.3390/en14092504
  • [4] Yan, L.; Xuejun, S.; Di, L. Comparative Study on Performance of Aeronautical ISG Based on Brushless Synchronous Generator and PMSG. Journal of Physics: Conference Series2021, 1871, 1. DOI :10.1088/1742-6596/1871/1/012037
  • [5] Praveen, R.P. A novel slot less Halbach-array permanent magnet brushless DC motor for spacecraft applications. IEEE Trans. Ind. Electron. 2012, 59, 9, 3553–3560.
  • [6] Wu, J.; Sun, F.; Deng, X.; Zhang, Z.; Yu, D.; Wang, Z.; Li, Z. Design and calculation of sine wave permanent magnet brushless motor for electric vehicle. E3S Web of Conferences. 2021, 261, 01056. DOI :10.1051/e3sconf/202126101056
  • [7] Tshambe, P.N.; Wei, J. Sensorless Starting Control of Brushless Synchronous Machine (BSM) for Aircraft. Journal of Physics: Conference Series 2021, 1914, 1. DOI :10.1088/1742-6596/1914/1/012030
  • [8] Ebus, T.; Dietz, M.; Hupfer, A. Experimental and numerical studies on small contra-rotating electrical ducted fan engines.CEAS Aeronautical Journal 2021, 12, 3, 559-571. DOI:10.1007/s13272-021-00517-
  • [9] Khasawneh, A.; Qawaqzeh, M.; Kuchanskyy, V.; Rubanenko, O.; Miroshnyk, O.; Shchur, T.; Drechny, M. Optimal Determination Method of the Transposition Steps of An Extra High Voltage Power Transmission Line. Energies 2021, 14, 6791. https://doi.org/10.3390/en14206791.
  • [10] Łukasik Z., Czaban A., Szafraniec A., Żuk V., - The mathematical model of the drive system with asynchronous motor and vertical pump Przegląd Elektrotechniczny, R. 94 NR 1/2018, 133-138
  • [11] Kolano, K.; Drzymała, B.; Gęca, J. Sinusoidal control of abrushless dc motor with misalignment of hall sensors. Energies2021, 14, 13. DOI :10.3390/en14133845
  • [12] Abdelfattah, H.; Mosaad, M.I.; Ibrahim, N.F. Adaptive neuro fuzzy technique for speed control of six-step brushless DC motor. Indonesian Journal of Electrical Engineering and Informatics 2021, 9, 2, 302-312. DOI:10.52549/ijeei.v9i2.2614
  • [13] Grechushkin, Yu.V.; Epifanov, O.K. On Control of BrushlessTorque Motors with High Phase Inductance in Direct Drives of Gyro Devices. Journal of Physics: Conference Series 2021, 1864, 1. DOI :10.1088/1742-6596/1864/1/012018
  • [14] Szafraniec A. Modelowanie matematyczne procesów oscylacyjnych w napędzie elektrohydraulicznym o podatnej transmisji ruchu, Przegląd Elektrotechniczny, R. 93 NR 12/2017, 167-170
  • [15] Song X.; Han B.; Wang K. Sensorless Drive of High-Speed BLDC Motors Based on Virtual Third-Harmonic Back EMF and High-Precision Compensation. IEEE Transactions on Power Electronics 2019, 34, 9, 8787-8796. doi:10.1109/TPEL.2018.2885031.
  • [16] Sikora, A.; Woźniak, M. Impact of current pulsation on BLDC motor parameters. Sensors 2021, 21, 2, 1-18. DOI:10.3390/s21020587
  • [17] Wang, Z.; Zhang, Y.; Yu, P.; Cao, N.; Dintera, H. Speed control of motor based on improved glowworm swarm optimization. Computers, Materials and Continua 2021, 69, 1, 503-519. DOI:10.32604/cmc.2021.017624
  • [18] Peicheng S.; Suo W.; Rongyun Z.; Ping X. Study on the fuzzy proportional–integral–derivative direct torque control strategywithout flux linkage observation for brushless direct current motors. International Journal of Advanced Robotic Systems2019, 16, 3, 172988141985314. doi:10.1177/1729881419853141.
  • [19] Rusek A., Czaban A., Lis M., Klatow K., Model matematycznyukładu elektromechanicznego z długim sprężystym wałem napędowym, Przegląd Elektrotechniczny, 91 (2015), nr 12, 69-72.
  • [20] Patel, H.; Chandwani, H. Simulation and experimental verification of modified sinusoidal pulse width modulation technique for torque ripple attenuation in Brushless DC motor drive. Engineering Science and Technology, International Journal 2021, 24, 3, 671-681. DOI:10.1016/j.jestch.2020.11.003
  • [21] Majdoubi, R.; Masmoudi, L.; Bakhti, M.; Jabri, B. Torque control oriented modeling of a brushless direct current motor (BLDCM) based on the extended park's transformation. Journal Europeen des Systemes Automatises 2021, 54, 1, 165-174. DOI:10.18280/jesa.540119
  • [22] Czaban A., Lis M., Klatow K., Nowak M., Patro M., Model matematyczny napędu synchronicznego o podatnej transmisji ruchu w fizycznych współ, rzędnych prądów (A-model), Przegląd Elektrotechniczny, 92 (2016), nr 12, 29-32.
  • [23] Franklin G.F.; Powell J.D.; Emami-Naeini A. Feedback Control of Dynamic Systems. 6th Edition, Prentice Hall, 2009, 840.
  • [24] Beloso-Legarra, J.; de la Cruz-Blas, C.A.; Lopez-Martin, A.J.; Ramirez-Angulo, J. Gain-boosted super class AB OTAs based on nested local feedback. 2021 IEEE Transactions on Circuits and Systems I: Regular Papers 2021, 68, 9, 9467261, 3562-3573. DOI: DOI:10.1109/TCSI.2021.3090154
  • [25] Gifta, G.; Rani, G.N.; Rajaram, S. Design of Low Noise, Low Power, Bulk-Driven CMOS Based Operational Transconductance Amplifier for Biosensor Applications. Journal of Electrical Engineering and Technology 2021, 16, 5, 2793-2807. DOI: 10.1007/s42835-021-00770-0
  • [26] Kolano, K. Determining the Position of the Brushless DC Motor Rotor. Energies 2020, 13, 1607. https://doi.org/10.3390/en13071607
  • [27] Mousavi-aghdam, S.R. Design and analysis of a novel topology for slotless brushless DC (BLDC) motors with enhanced torque and efficiency. IET Electric Power Applications 2020, 284-298. https://doi.org/10.1049/elp2.12020
  • [28] Zhang, X.; Zhao, Y.; Lin, H.; Riaz, S.; Elahi, H. Real-Time Fault Diagnosis and Fault-Tolerant Control Strategy for Hall Sensors in Permanent Magnet Brushless DC Motor Drives. Electronics2021, 10, 1268. https://doi.org/10.3390/electronics10111268
  • [29] Al_Issa, H.A.; Qawaqzeh, M.; Khasawneh, A.; Buinyi, R.; Bezruchko, V.; Miroshnyk, O. Correct Cross-Section of Cable Screen in a Medium Voltage Collector Network with Isolated Neutral of a Wind Power Plant. Energies 2021, 14, 3026. https://doi.org/10.3390/en14113026.
  • [30] Bezruchko, V.; Buinyi, R.; Strogii, A. Application of GSM technology for identification of phase-to-ground faults in electric networks with isolated neutral and pin-type isolation. Tekhnichna elektrodynamika 2018, 5, 96-99. https://doi.org/10.15407/techned2018.05.096
  • [31] Olena Rubanenko, Vitalii Yanovych, Oleksandr Miroshnyk, Dmytro Danylchenko. Hydroelectric Power Generation for Compensation Instability of Non-guaranteed Power Plants. 2020 IEEE 4th International Conference on Intelligent Energy and Power Systems (IEPS) 52-56, 20199422. DOI: 10.1109/IEPS51250.2020.9263151
  • [32] Pazyi V., Miroshnyk O., Moroz O., Trunova I., Savchenko O,Halko S. Analysis of technical condition diagnostics problems and monitoring of distribution electrical network modes from smart grid platform position. 2020 IEEE KhPI Week on Advanced Technology (KhPIWeek), 57-60, 20168725 DOI: 10.1109/KhPIWeek51551.2020.9250080.
  • [33] Qawaqzeh M., Zaitsev R., Miroshnyk O., Kirichenko M., Danylchenko D., Zaitseva L. High-voltage DC converter for solar power station. International journal of power electronics and drive system. – 2020. – Vol. 11, No. 4. – P. 2135-2144. DOI:10.11591/ijpeds.v11.i4.pp2135-2144
  • [34] Iegorov, O.; Iegorova, O.; Miroshnyk, O.; Savchenko, O. Improving the accuracy of determining the parameters of induction motors in transient starting modes. Energetika 2020, 66, 1, 15-23. DOI:10.6001/energetika.v66i1.4295
  • [35] Qawaqzeh, M.Z.; Miroshnyk, O.; Shchur, T.; Kasner, R.; Idzikowski, A.; Kruszelnicka, W.; Tomporowski, A.; Bałdowska-Witos, P.; Flizikowski, J.; Zawada, M.; Doerffer, K. Research of Emergency Modes of Wind Power Plants Using Computer Simulation. Energies 2021, 14, 4780. https://doi.org/10.3390/en14164780
  • [36] Miroshnyk, O., Kovalyshyn, S., Tomporowski, A., Kruszelnicka, W., Bałdowska-Witos, P. Research of probability characteristicsof current and voltage unbalance based on using graphs of load for the duration at the substation. Journal of Physics: Conference Series, Volume 1426, Issue 1, 012036, 2020. DOI: 10.1088/1742-6596/1426/1/012036
  • [37] Miroshnyk, O., Szafraniec, A. Investigation of power saving modes in 10/0.4 kV distribution networks. Przeglad Elektrotechniczny. R. 96, №4, 2020, 174-177 pp. doi:10.15199/48.2020.04.36.
  • [38] Qawaqzeh M., Szafraniec A., Halko S., Miroshnyk O., Zharkov A. Modelling of a household electricity supply system based on a wind power plant. Przegląd Elektrotechniczny, № 96, p. 36-40, 2020 doi:10.15199/48.2020.11.08.
  • [39] Benômar, Y.; Croonen, J.; Verrelst, B.; Van Mierlo, J.; Hegazy, O. On analytical modeling of the air gap field modulation in the brushless doubly fed reluctance machine. Energies 2021, 14, 9. DOI :10.3390/en14092388 [40] Sikora R., Markiewicz P. The influence of modern luminaires on the supply network, Przegląd Elektrotechniczny 2010, 86 (6), 61-64
  • [41] Sikora, R.; Markiewicz, P.; Pabjańczyk, W. The Active Power Losses in the Road Lighting Installation with Dimmable LED Luminaires. Sustainability 2018, 10, 4742. https://doi.org/10.3390/su10124742
  • [42] Korzeniewska, E.; Sekulska-Nalewajko, J.; Gocławski, J.; Rosik, R.; Szczęsny, A.; Starowicz, Z. Surface Morphology Analysis of Metallic Structures Formed on Flexible Textile Composite Substrates. Sensors 2020, 20, 2128. https://doi.org/10.3390/s20072128
  • [43] Singh, S. K.; Boolchandani, D.; Modni, S. G.; Katal, N. Multi-Objective Optimization of PID Controller for Temperature Control in Centrifugal Machines Using Genetic Algorithm. Research Journal of Applied Sciences, Engineering and Technology 2014, 7, 9, 1794-1802.
  • [44] Komada, P.; Trunova, I.; Miroshnyk, O.; Savchenko, O.; Shchur, T. The incentive scheme for maintaining or improving power supply quality. Przegląd Elektrotechniczny 2019, 5, 79-82. doi:10.15199/48.2019.05.20.
  • [45] Iegorov, O.; Iegorova, O.; Miroshnyk, O.; Cherniuk, A. A calculated determination and experimental refinement of the optimal value of the single-phase induction motor transformation ratio. Energetika 2021, 67, 1, 13-19. DOI: 10.6001/energetika.v67i1.4483
  • [46] Chen, Y.; Ma, Y.; Yun, W. Application of Improved Genetic Algorithm in PID Controller Parameters Optimization. TELKOMNIKA Indonesian Journal of Electrical Engineering2013, 11, 3, 1524–1530. doi:10.11591/telkomnika.v11i3.2301.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-948abb71-9f59-4148-8f14-3dd1741132a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.