PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The New Algorithm for Fast Probabilistic Hypocenter Locations

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The spatial location of sources of seismic waves is one of the first tasks when transient waves from natural (uncontrolled) sources are analysed in many branches of physics, including seismology, oceanology, to name a few. It is well recognised that there is no single universal location algorithm which performs equally well in all situations. Source activity and its spatial variability in time, the geometry of recording network, the complexity and heterogeneity of wave velocity distribution are all factors influencing the performance of location algorithms. In this paper we propose a new location algorithm which exploits the reciprocity and time-inverse invariance property of the wave equation. Basing on these symmetries and using a modern finite-difference-type eikonal solver, we have developed a new very fast algorithm performing the full probabilistic (Bayesian) source location. We illustrate an efficiency of the algorithm performing an advanced error analysis for 1647 seismic events from the Rudna copper mine operating in southwestern Poland.
Czasopismo
Rocznik
Strony
2382--2409
Opis fizyczny
Bibliogr. 67 poz.
Twórcy
autor
  • Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland
autor
  • Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland
Bibliografia
  • Aki, K., and P. Richards (1985), Quantitative Seismology, Freeman and Co., San Francisco
  • Artman, B., I. Podladtchikov, and B. Witten (2010), Source location using timerevers imaging, Geophys. Prosp. 58, 5, 861-873, DOI:10.1111/j.1365- 2478.2010.00911.x
  • Bai, L., Z. Wu, T. Zhang, and I. Kawasaki (2006), The effect of distribution of stations upon location error: Statistical tests based on the double-difference earthquake location algorithm and the bootstrap method. Earth Planets Space 58, 2, e9- e12, DOI:10.1186/BF03353364.
  • Brandt, S. (1999), Data Analysis. Statistical and Computational Methods for Scientists, Springer-Verlag.
  • Bulland, R. (1976), The Mechanics of locating earthquakes, Bull. Seismol. Soc. Am. 66, 1, 173-187.
  • Chib, S. and Greenberg (1995), Understanding the Metropolis-Hastings Algorithm, Am. Stat. 49, 327-335, DOI: 10.1080/00031305.1995.10476177.
  • Curtis, A. and A. Lomax (2001), Prior information sampling distributions and the curse of dimensionality. Geophysics 66, 2, 372-378, DOI:10.1190/1.1444928.
  • Dagum, L. and R. Menon (2002), OpenMP: an industry standard API for sharedmemory programming, Comput. Sci. Eng. IEEE 5, 1, 46-55, DOI:10.1109/ 99.660313.
  • Debski, W. (1996). Location of Seismic Events A Quest for Accuracy, SpringerVerlag, Berlin, DOI: 10.1007/BFb0011773.
  • Debski, W. (2004). Application of Monte Carlo techniques for solving selected seismological inverse problems, Publs. Inst. Geophys. Pol. Acad. Sc. B-34, 367, 1-207.
  • Debski, W. (2010), Probabilistic inverse theory, Adv. Geophys. 52, 1-102, DOI:10.1016/S0065-2687(10)52001-6.
  • Debski, W. (2015), Using meta-information of a posteriori Bayesian solutions of the hypocenter location task for improving accurcy of location error estimation, Geophys. J. Int. 201, 3, 1399-1408, DOI:1093/gji/ggv083.
  • Debski, W., B. Guterch, H. Lewandowska, and P. Labak (1997), Earthquake sequences in the Krynica region Western Carpathians 1992 - 1993, Acta Geophys. Pol. XLV, 4, 255-290.
  • Fink, M. (1997), Time reversed acoustic, Physics Today 50, 3, 34-40, DOI:10.1063/1.881692.
  • Fink, M., D. Cassereau, A. Derode, C. Prada, P. Roux, M. Tanter, J.-L. Thomas, and F. Wu (2000), Time-reversed acoustics, Reports on Progress in Physics 63, 12, 1933-1994.
  • Fink, M. and M. Tanter (2010), Multiwave imaging and super resolution. Physics Today 63, 2, 28-33, DOI:10.1063/1.3326986.
  • Font, Y., H. Kao, S. Lallemand, C.-S. Liu, and L.-Y. Chiao (2004), Hypocentre determination offshore of eastern Taiwan using the Maximum Intersection method, Geophys. J. Int. 158, 655-675, DOI:10.1111/j.1365-246X.2004.02317.x.
  • Gajewski, D. and E. Tessmer (2010), Reverse modelling for seismic event characterization, Geophys. J. Int. 163, 1, 276-284, DOI: 10.1111/j.1365- 246X.2005.02732.x.
  • Gibowicz, S. J. and A. Kijko (1994), An Introduction to Mining Seismology. San Diego: Academic Press.
  • Gibowicz, S. J. and S. Lasocki (2001), Seismicity Induced by Mining: Ten Years Later. Adv. Geophys. 44, 39-181, DOI:10.1016/S0065-2687(00)80007-2.
  • Gilks, W., S. Richardson, and D. Spiegelhalter (1995), Markov Chain Monte Carlo in Practice, Chapman& Hall/CRC Press.
  • Giovambattista, R. and S. Barba (1997), An estimate of hypocentre location accuracy in a large network: possible implications for tectonic studies in Italy, Geophys. J. Int. 129, 1, 124-132, DOI:10.1111/j.1365-246X.1997.tb00941.x.
  • Hauser, J., M. Sambridge, and N. Rawlinson (2008). Multiarrival wavefront tracking and its applications, Geochem. Geophys., Geosys. 9, 11, DOI:10.1111/j.1365- 246X.1997.tb00941.x.
  • Husen, S. and J. Hardebeck (2010). Earthquake location accuracy, Community online resources for statistical seismicity analysis. DOI: 10.5078/corssa-55815573.
  • Husen, S., E. Kissling, E. Flueh, and G. Asch (1999), Accurate hypocentre determination in the seismogenic zone of the subducting Nazca Plate in northern Chile using a combined on-/offshore network, Geophys. J. Int. 138, 3, 687-701, DOI:10.1046/j.1365-246x.1999.00893.x.
  • Kennett, B. and A. Fichtner (2012), A unified concept for comparison of seismograms using transfer functions, GJI 191, 3, 1403-1416, DOI: 10.1111/j.1365- 246X.2012.05693.x.
  • Klein, F. (2002), User’s guide to HYPOINVERSE-2000: A Fortran program to solve for earthquake locations and magnitudes, US Geological Survey.
  • Kloc, M. and T. Danek (2012), The Multi GPU Accelerated Waveform Inversion in Distributed OpenCL Environment, Volume 151 of Lecture Notes in Electrical Engineering, Springer New York, .
  • Kremers, S., A. Fichtner, G. Brietzke, H. Igel, C. Larmat, L. Huang, and M. Kaser (2011), Exploring the potentials and limitations of the time-reversal imaging of finite seismic sources. Solid Earth 2, 1, 95-105, DOI:10.5194/se-2-95-2011.
  • Lahr, J. (1989), HYPOELIPSE (revised); A computer program for determining local earthquake hypocentral parameters, magnitude and first motion pattern , US Geological Survey.
  • Larmat, C., R. Guyer, and P. A. Johnson1 (2009), Tremor source location using time reversal: Selecting the appropriate imaging field, Geophys. Res. Lett. 36, (L22304),DOI:10.1029/2009GL040099 .
  • Larmat, C., J. Tromp, Q. Liu, and J.-P. Montagner (2008), Time reversal location of glacial earthquakes, J. Geophys. Res. 113, B09314, 1-9, DOI:10.1029/2008JB005607
  • Lee, W. and J. Lahr (1975), HYPO71 (revised); A computer program for determining hypocenter, magnitude, and first motion pattern of local earthquakes, US Geological Survey.
  • Lehmann, E. L. and G. Casella (1998). Theory of Point Estimation, Springer Texts in Statistics. New York: Springer-Verlag.
  • Lomax, A. (2005). A Reanalysis of the Hypocentral Location and Related Observations for the Great 1906 California Earthquake, Bull. Seismol. Soc. Am. 95, 3, 861- 877, DOI: 10.1785/0120040141.
  • Lomax, A., A. Michelini, and A. Curtis (2009), Earthquake Location, Direct, GlobalSearch Methods, Volume 5. New York: Springer, DOI: 10.1007/978-0-387- 30440-3.
  • Lomax, A., J. Virieux, P. Volant, and C. Berge (2000). Probabilistic earthquake location in 3D and layered models: Introduction of a Metropolis-Gibbs method and comparison with linear locations, Amsterdam: Kluver, DOI:10.1007/978- 94-015-9536-0_5.
  • Lomax, A., A. Zollo, P. Capunao, and J. Virieux (2001), Precise absolute earthquake location under Somma-Vesuvius volcano using a new three-dimensional velocity model, Geophys. J. Int. 146, 2, 313-331, DOI:10.1046/j.0956- 540x.2001.01444.x.
  • Masson, Y., P. Cupillard, Y. Capdeville, and B. Romanowicz (2014), On the numerical implementation of time-reversal mirrors for tomographic imaging. Geophys. J. Int., 3, 1-11, DOI:10.1093/gji/ggt459.
  • Matsu’ura, M. (1984), Bayesian estimation of hypocenter with origin time eliminated, J. Phys. Earth. 32, 6, 469-483.
  • Menke, W. (1989), Geophysical Data Analysis: Discrete Inverse Theory, International Geophysics Series. San Diego: Academic Press.
  • Mosegaard, K. and M. Sambridge (2002). Monte Carlo analysis of invers problems. Inv. Prob. 18, 3, R29-45, DOI: 10.1088/0266-5611/18/3/201.
  • Mosegaard, K. and A. Tarantola (2002), International Handbook of Earthquake & Engineering Seismology, Volume 81 of International Geophysics Series. Academic Press.
  • O‘Brien, G., J. Lokmer, L. D. Barros, C. Bean, G. Saccorotti, J.-P. Metaxian, and D. Patane (2011). Time reverse location of seismic long-period events recorded on Mt Etna. Geophys. J. Int. 184, 1, 452-462, DOI:10.1111/j.1365- 246X.2010.04851.x.
  • Pavlis, G. L. (1992), Appraising relative earthquake location errors, Bull. Seismol. Soc. Am. 82, 2, 836-859.
  • Podvin, P. and I. Lacomte (1991), Finite-difference computtion of traveltimes in very contrasted velocity models: a massively paarallel approach and its associated tools, Geophys. J. Int. 105, 1, 271-284, DOI:10.1111/j.1365- 246X.1991.tb03461.x.
  • Quinn, M. (2008), Parallel Programming in C with MPI and OpenMP. McGraw-Hill Education.
  • Rawlinson, N. and M. Sambridge (2004), Multiple reflection and transmission phases in complex layered media using a multistage fast marching method. Geophys. 69, 5, 2178-2193, DOI:10.1190/1.1801950.
  • Rudzinski, L. and W. Debski (2011). Extending the Double Difference location technique for mining applications - part I: Numerical study. Acta Geophys. 59, 4, 785-814, DOI:10.2478/s11600-011-0021-5.
  • Rudzinski, L. and W. Debski (2012), Extending the Double Difference location technique - improving hypocenter depth determination. J. Seismol. 17, 1, 83-94, DOI:10.1007/s10950-012-9322-7.
  • Sambridge, M. and K. Mosegaard (2002), Monte Carlo Methods in Geophysical Inverse Problems. Rev. Geophys. 40, 3, 3.1-3.29, DOI:10.1029/2000RG000089.
  • Scalerandi, M., M. Griffa, and P. Johnson (2009), Robustness of computational time reversal imaging in media with elastic constant uncertainties. J. Appl. Phys. 106, 114911, DOI:10.1063/1.3269718.
  • Sethian, J. A. (1999), Level set methods and fast marching methods: evolving interfaces in computational geometry fluid mechanics computer vision and materials science. Cambridge Monographs on Applied and Computational Mathematics. New York: Cambridge University Press.
  • Steiner, B. and E. Saenger (2012), Comparison of 2D and 3D time-reverse imaging - A numerical case study, Comput & Geosci. 46, 174-182, DOI:10.1016/j.cageo.2011.12.005.
  • Tarantola, A. (2005), Inverse Problem Theory and Methods for Model Parameter Estimation, Philadelphia: SIAM.
  • Thurber, C. and N. Rabinowitz (2000). Advances in Seismic Event Location, Volume 18. Springer.
  • Tromp, J., C. Tape, and Q. Liu (2005), Seismic tomography, adjoints methods, time reversal and banana-doughnut kernels, Geophys. J. Int. 160, 1, 195-216, DOI:10.1111/j.1365-246X.2004.02453.x.
  • Ulrich, T., K. V. D. Abeele, P.-Y. L. Bas, M. Griffa, B. Anderson, and R. Guyer (2009), Three component time reversal: Focusing vector components using a scalar source, J. Appl. Physics 106, 11, 113504, DOI:10.1063/1.3259371.
  • Ulrich, T., A. Sutin, R. Guyer, and P. Johnson (2008), Time reversal and non-linear elastic wave spectroscopy (TR NEWS) techniques, Int. J. of Non-Lin. Mech. 43, 3, 209-216, DOI:10.1016/j.ijnonlinmec.2007.12.017.
  • Vidale, J. (1990), Finite-difference calculation of traveltime in three dimensions. Geophysics 55, 5, 521-526, DOI:10.1190/1.1442863.
  • Virieux, J., S. Operto, H. Ben-Hadj-Ali, R. Brossier, V. Etienne, and F. Sourbier (2009). Seismic wave modeling for seismic imaging. Leading Eadge,28, 5, 538-544, DOI:10.1190/1.3124928.
  • Waldhauser, F. and W. Ellsworth (2000), A double-difference earthquake location algorithm: method and application. Bull. Seismol. Soc. Am. 90, 6, 1353-1368.
  • Wiejacz, P. and W. Debski (2001), New Observation of Gulf of Gdansk Seismic Events. Phys. Earth Planet. Int. 123, 2-4, 233-245, DOI:10.1016/S0031- 9201(00)00212-0.
  • Witten, B. and B. Artman (2011). Signal-to-noise estimates of time-reverse images. Geophysics 76,2, MA1-MA10, DOI:10.1190/1.3543570.
  • Zhang, L., J. Rector, and G. Hoversten (2005), Eikonal solver in the celerity domain, Geophys. J. Int. 162, 1, 1-8, DOI:10.1111/j.1365-246X.2005.02626.x.
  • Zhao, H. (2005), Fast Sweeping Method for Eikonal equations. Math. Comput. 74, 603-627, DOI:10.1090/S0025-5718-04-01678-3.
  • Zhou, H. (1994), Rapid three-dimensional hypocentral determination using a master station method, J. Geophys. Res. 99, B8, 715439-15455, DOI:10.1029/94JB00934.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9487382c-ab2f-4744-aa65-831305f8f5de
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.