Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose Commercially pure titanium is recognised as one of the most biocompatible materials used in everyday medicine, particularly in prosthodontics. However, its high reactivity with oxygen and low thermal expansion makes titanium difficult to process, making it less popular as a material for porcelain fused to metal substructures. Analysing the available literature studies, both positive and negative effects of the oxide layer on the titanium-ceramic bond have been found. The given work attempted to anodically create oxide coatings in a 2% Na2SiO3 solution on commercially pure titanium, which could serve as substructures for crowns and dental bridges. Design/methodology/approach Grade 2 titanium discs (diameter 20 mm, height 5 mm) were ground and polished. The alloy composition was determined by X-ray fluorescence analysis. The samples were divided into six groups and subjected to anodic oxidation in a 2% Na2SiO3 solution at constant voltages: 230 V, 270 V, 300 V, 350 V, 400 V, and a time of t = 1 min. The obtained oxide layers were examined by X-ray diffraction, chemical composition analysis, and SEM observation. Findings Coating thicknesses ranging from 0.65 μm to 13.2 μm were obtained. Besides titanium oxide, an amorphous phase is present in the anodised layer. Research limitations/implications It is crucial to provide the ideal voltage directly related to the employed solution to maintain the useable thickness of the oxide layers. Variations in oxide layer thickness beyond optimal value may lead to exfoliating if it exceeds 1 μm or present fractures if it subceeds 1 μm. Originality/value Titanium oxide layers obtained by anodic oxidation are mainly tested on their biocompatibility and tissue integration so important in implantology. However, the given paper focuses on creating oxide layers that may strengthen the bond between titanium and dental ceramics.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
75--83
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
- Department of Dental Techniques, Medical University of Lodz, ul. Pomorska 251, 92-231 Łódź, Poland
autor
- Department of Dental Techniques, Medical University of Lodz, ul. Pomorska 251, 92-231 Łódź, Poland
autor
- Institute of Material Science and Engineering, Lodz University of Technology, ul. Stefanowskiego 1/15, 90-924 Łódź, Poland
autor
- Department of Dental Prosthodontics, Medical University of Lodz, ul. Pomorska 251, 92-231 Łódź, Poland
Bibliografia
- [1] I.A. Tsolakis, S. Gizani, A.I. Tsolakis, N. Panayi, Pedodontic Appliances : A Critical Review of a New Era for Treatment, Child 9/8 (2022) 1107. DOI: https://doi.org/10.3390/children9081107
- [2] D.F. Williams, On the mechanisms of biocompatibility, Biomaterials 29/20 (2008) 2941-2953. DOI: https://doi.org/10.1016/j.biomaterials.2008.04.023
- [3] D.F. Williams (ed), Definitions in biomaterials: proceedings of a consensus conference of the European Society for Biomaterials, Chester, England, March 3-5, 1986, vol. 4, Elsevier, New York, 1987.
- [4] P. Downarowicz, M. Mikulewicz, Trace metal ions release from fixed orthodontic appliances and DNA damage in oral mucosa cells by in vivo studies: A literature review, Advances in Clinical and Experimental Medicine 26/7 (2017) 1155-1162. DOI: https://doi.org/10.17219/acem/65726
- [5] H.-H. Huang, Y.-H. Chiu, T.-H. Lee, S.-C. Wu, H.-W. Yang, K.-H. Su, C.-C. Hsu, Ion release from NiTi orthodontic wires in artificial saliva with various acidities, Biomaterials 24/20 (2003) 3585-3592. DOI: https://doi.org/10.1016/S0142-9612(03)00188-1
- [6] K. Banaszek, L. Klimek, Ti(C, N) as barrier coatings, Coatings 9/7 (2019) 432. DOI: https://doi.org/10.3390/coatings9070432
- [7] K. Banaszek, A. Wiktorowska-Owczarek, E. Kowalczyk, L. Klimek, Possibilities of applying Ti (C, N) coatings on prosthetic elements - Research with the use of human endothelial cells, Acta of Bioengineering and Biomechanics 18/1 (2016) 119-126. DOI: https://doi.org/10.5277/ABB-00220-2014-04
- [8] K. Banaszek, L. Klimek, J.R. Dąbrowski, W. Jastrzębski, Fretting wear in orthodontic and prosthetic alloys with Ti(C, N) coatings, Processes 7/12 (2019) 874. DOI: https://doi.org/10.3390/pr7120874
- [9] D. Quadras, U. Nayak, N. Kumari, H. Priyadarshini, S. Gowda, B. Fernandes, In vivo study on the release of nickel, chromium, and zinc in saliva and serum from patients treated with fixed orthodontic appliances, Dental Research Journal (Isfahan) 16/4 (2019) 209-215.
- [10] I. Sifakakis, T. Eliades, Adverse reactions to orthodontic materials, Australian Dental Journal 62/S1 (2017) 20-28. DOI: https://doi.org/10.1111/adj.12473
- [11] P.I. Brånemark, U. Breine, R. Adell, B.O. Hansson, J. Lindström, A. Ohlsson, Intra-osseous anchorage of dental prostheses: I. Experimental studies, Scandinavian Journal of Plastic and Reconstructive Surgery 3/2 (1969) 81-100. DOI: https://doi.org/10.3109/02844316909036699
- [12] M. Klekotka, J.M. Dąbrowski, K. Rećko, Fretting and Fretting Corrosion Processes of Ti6Al4V, Materials 13/7 (2020) 1561. DOI: https://doi.org/10.3390/ma13071561
- [13] M. Gołębiowski, A. Sobczyk-Guzenda, W. Szymański, L. Klimek, Influence of parameters of stream abrasive treatment of titanium surfaces on contact angle and surface free energy, Inżynieria Materiałowa – Materials Engineering 31/4 (2010) 978-980 (in Polish).
- [14] P. Haag, K. Nilner: Bonding between titanium and dental porcelain: a systematic review, Acta Odontologica Scandinavica 68/3 (2010) 154-164. DOI: https://doi.org/10.3109/00016350903575260
- [15] O. Inan, A. Acar, S. Halkaci, Effects of sandblasting and electrical discharge machining on porcelain adherence to cast and machined commercially pure titanium, Journal of Biomedical Materials Research Part B: Applied Biomaterials 78B/2 (2006) 393-400. DOI: https://doi.org/10.1002/jbm.b.30500
- [16] K. Banaszek, K. Pietnicki, L. Klimek, The influence of parameters of abrasive jet machining processing on the number of stubble elements stuck in nickel-chrome alloy surface, Inżynieria Materiałowa – Materials Engineering 32/4 (2011) 312-315 (in Polish).
- [17] I. Al Hussaini, K.A. Al Wazzan, Effect of surface treatment on bond strength of low-fusing porcelain to commercially pure titanium, The Journal of Prosthetic Dentistry 94/4 (2005) 350-356. DOI: https://doi.org/10.1016/j.prosdent.2005.07.007
- [18] M. Wilk, L. Klimek, Oxide layers on titanium obtained by anodization in sulphuric acid, Metal Forming 30/2 (2019) 135-144.
- [19] L. Benea, E. Mardare-Danaila, M. Mardare, J-P. Celis, Preparation of titanium oxide and hydroxyapatite on Ti–6Al–4V alloy surface and electrochemical behaviour in bio-simulated fluid solution, Corrosion Science 80 (2014) 331-338. DOI: https://doi.org/10.1016/j.corsci.2013.11.059
- [20] D. Capek, M-P. Gigandet, M. Masmoudi, M. Wery, O. Banakh, Long-time anodisation of titanium in sulphuric acid, Surface and Coatings Technology 202/8 (2008) 1379-1384. DOI: https://doi.org/10.1016/j.surfcoat.2007.06.027
- [21] J.-L. Delplancke, R. Winand, Galvanostatic anodization of titanium - I. Structures and compositions of the anodic films, Electrochimica Acta 33/11 (1988) 1539-1549. DOI: https://doi.org/10.1016/0013-4686(88)80223-8
- [22] D.J. LeClere, A. Velota, P. Skeldon, G.E. Thompson, S. Berger, J. Kunze, P. Schmuki, H. Habazaki, S. Nagata, Tracer Investigation of Pore Formation in Anodic Titania, Journal of The Electrochemical Society 155/9 (2008) C487. DOI: https://doi.org/10.1149/1.2946727
- [23] M. Gołębiowski, K. Pietnicki, L. Klimek, Influence of parameters of air abrasion on the number of abrasive particles embedded in the surface of titanium alloy, Magazyn Stomatologiczny - Dental Magazine 20/6 (2010) 34-38 (in Polish).
- [24] M. Wilk, L. Klimek, Oxide layers on titanium obtained by anodizing in orthophosphoric acid, Archives of Materials Science and Engineering 94/1 (2018) 11-17. DOI: https://doi.org/10.5604/01.3001.0012.7803
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9487147d-d104-44fd-8332-063af9c6216e