PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Vibration reduction on circular saw blades with vibroacoustic metamaterials

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The presented work focuses on the experimental investigation of a vibroacoustic metamaterial integrated into a spinning circular saw blade. Vibroacoustic metamaterials are a novel technology for broadband vibration reduction. Built from an array of local resonators, a broadband vibration reduction characteristic in the frequency domain (a so-called stop band) can be achieved. A design of a vibroacoustic metamaterial suitable for integration into a circular saw blade is developed and a numerical stop band prediction is performed. The resonators of the vibroacoustic metamaterial are integrated into the saw blade with a water jet cutting machine to create slots, forming flaps that are free to oscillate. The structural dynamic behavior of the saw blade with integrated vibroacoustic metamaterial is experimentally investigated on a rotor dynamic test bench and compared to that of a standard saw blade. The saw blades are excited by an automatic impulse hammer and the resulting out-of-plane vibrations are measured with a laser vibrometer at two different radii. Measurements are conducted at different rotational speeds up to 1800 rpm. Up to rotational speeds of 1000 rpm a stop band characteristic in the frequency range of 1900–2500 Hz is observed.
Rocznik
Strony
art. no. e147921
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
  • Fraunhofer Institute for Structural Durability and System Reliability LBF, 64298, Darmstadt, Germany
autor
  • Fraunhofer Institute for Structural Durability and System Reliability LBF, 64298, Darmstadt, Germany
autor
  • Fraunhofer Institute for Structural Durability and System Reliability LBF, 64298, Darmstadt, Germany
Bibliografia
  • [1] F. Schelle, M. Janssen, and J. Maue, “Neuartige lärmgeminderte Sägeblätter für die Holzbearbeitung,” in Proc. 42nd Deutsche Jahrestagung für Akustik (DAGA), 2016, pp. 1226–1228.
  • [2] A. Droba, L. Javorek, J. Svoren, and D. Paulíny, “New design of circular saw blade body and its influence on critical rotational speed,” Drewno, vol. 58, no. 194, pp. 147–157, 2015, doi: 10.12841/wood.1644-3985.081.12.
  • [3] J. Svoren, L. Javorek, and L. Murin, “Effect of the Shape of Compensating Slots in the Body of a circular Saw Blade on Noise Level in the Cutting Process,” ProLigno, vol. 6, no. 4, pp. 5–12, 2010.
  • [4] S. Weiland and C. Birenbaum, “Optimization of geometric features of circular saw blades and parameters of the manufacturing process aided by optiSLang,” in Proc. 11th Weimarer Optimization and Stochastic Days, 2014.
  • [5] Deutsche Gesetzliche Unfallversicherung DGUV, “Geräuschge-minderte Sägeblätter für Holz, Kunststoff und Aluminium – Marktübersicht, Schalldruckpegel in Labor und Praxis, Lärmschutz-Arbeitsblatt LSA 01-375 Berufsgenossen-schaftliche Informationen für Sicherheit und Gesundheit bei der Arbeit (BGI/GUV-I).” Umwelt-online.de [Online]. Available: [Accessed: 01. Apr. 2023].
  • [6] N. Gunes Yılmaz, “Process efficiency comparison of a sandwich-core sawblade and a conventional sawblade used in stone-machining,” J. Clean Prod., vol. 47, pp. 26–31, 2013, doi: 10.1016/j.jclepro.2013.01.042.
  • [7] E. Saljé and U. Bartsch, “Geräuschuntersuchung an Kreissäge- und Vorritzsägeblättern für die Holzbearbeitung,” Holz Als Rohund Werkst., vol. 35, pp. 179–181. 1977.
  • [8] S. Nishio and E. Marui, “Effects of slots on the lateral vibration of a circular saw blade,” Int. J. Mach. Tools Manuf., vol. 36, no. 7, pp. 771–787, 1996.
  • [9] G. Pahlitzsch and B. Rowinski, “Über das Schwingungsverhalten von Kreissägeblättern—Dritte Mitteilung: Schwingungen der Sägeblätter im Schnitt und ihre Dämpfung,” Eur. J. Wood Prod., vol. 25, no. 9, pp. 348–357, 1967.
  • [10] Y.M. Stakhiev, “Research on circular saw disc problems: several of results,” Holz Als Roh-und Werkst., vol. 61, no.1, pp. 13–22, 2003.
  • [11] Berufsgenossenschaft Holz und Metall, DGUV Information 209-044, Holzstaub. Berlin: Deutsche Gesetzliche Unfallversicherung e.V. (DGUV), 2019.
  • [12] C. Droz, O. Robin, M. Ichchou, and N. Atalla, “Improving sound transmission loss at ring frequency of a curved panel using tunable 3D-printed small-scale resonators,” J. Acoust. Soc. Am., vol. 145, no. 1, pp. EL72–EL78, 2019, doi: 10.1121/1.5088036.
  • [13] S. Riess et al., “Vibroacoustic Metamaterials for enhanced acoustic Behavior of Vehicle Doors,” in Proc. 15th International Congress on Artificial Materials for Novel Wave Phenomena – Metamaterials, 2021, pp. X-374–X-376, doi: 10.1109/Metamaterials52332.2021.9577065.
  • [14] S. Riess, M. Droste, S. Shariatinia, and H. Atzrodt, “Design of Vibroacoustic Metamaterial for vibration Reduction on Sheet Metal Structures for Industrial Machinery,” in Proc 16th International Congress on Artificial Materials for Novel Wave Phenomena – Metamaterials, 2022, pp. X-359–X-361, doi: 10.1109/Metamaterials54993.2022.9920821.
  • [15] A. Mondal, S. Dutta, and S. Murugan, “Coupled flexural and torsional vibration attenuation with locally resonant metamaterials,” Mater.Today-Proc., vol. 87, pp. 99–103, 2023, doi: 10.1016/j.matpr.2023.01.111.
  • [16] I. Arretche and K.H. Matlack, “Centrifugal forces enable band gaps that self-adapt to synchronous vibrations in rotating elastic metamaterial,” Mech. Syst. Signal Proc., vol. 202, p. 110689, 2023, doi: https://doi.org/10.1016/j.ymssp.2023.110689.
  • [17] C. Rosso, E. Bonisoli, and F. Bruzzone, “On the Implementation of Metastructures in Rotordynamics,” in Rotating Machinery, Vibro-Acoustics & Laser Vibrometry, vol. 7. Conference Proceedings of the Society for Experimental Mechanics Series, D. Di Maio, Ed., 2018, doi: 10.1007/978-3-319-74693-7_5.
  • [18] S. Riess, M. Droste, and H. Atzrodt, “Noise Reduction of circular Saw Blades using Vibroacoustic Metamaterial,” in Proc. 16th International Congress on Artificial Materials for Novel Wave Phenomena – Metamaterials, 2022, pp. X-362–X-364, doi: 10.1109/Metamaterials54993.2022.9920757.
  • [19] F. Bloch, “Über die Quantenmechanik der Elektronen in Kristallgittern,” Zeitschrift für Physik, vol. 52, pp. 555–600, 1929.
  • [20] C. Claeys, “Design and Analysis of Resonant Metamaterials for Acoustic Insulation,” Ph.D. dissertation, KU Leuven, Belgium, 2014.
  • [21] H. Al Ba’ba’a, M.A. Attarzadeh, and M. Nouh, “Experimental Evaluation of Structural This work was supported by the Fraunhofer Internal Programs under Grant No. PREPARE 840224. Intensity in Two-Dimensional Plate-Type Locally Resonant Elastic Metamaterials,” J. Appl. Mech., vol. 85, no. 4, pp. 041005-1–041005-9, 2018, doi: 10.1115/1.4039042.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-94820aaa-de72-4f48-9fdb-fa89ca759254
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.