PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Workings of auxetic nano-materials

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The human mind is consistently interested in new materials having unique properties. Recently, a relatively new field is being investigated which exhibits a negative Poisson’s ratio (NPR), and consequently are termed auxetic materials. Design/methodology/approach: One of the main reason for interest in auxetic materials is due to the possibility of enhanced mechanical properties such as shear modulus, plane strain fracture toughness and indentation resistance compared to non auxetic material. Findings: Auxetic materials were described concerning their classification, characteristic, properties and potential applications. Research limitations/implications: The paper is an overview the modelling structure and deformation mechanisms of auxetic nano-materials. Originality/value: The paper shows the possibilities of auxetic materials application resulting from their mechanical properties.
Słowa kluczowe
Rocznik
Strony
585--593
Opis fizyczny
Bibliogr. 59 poz., rys.
Twórcy
autor
  • Institute for Material Research and Innovation, The University of Bolton, BL3 5AB, Bolton, UK
autor
  • Institute for Material Research and Innovation, The University of Bolton, BL3 5AB, Bolton, UK
  • Department of Textile Educations, Marmara University, 34722, Goztepe, Istanbul, Turke
autor
  • Institute for Material Research and Innovation, The University of Bolton, BL3 5AB, Bolton, UK
  • British University of Egypt, Cairo, Suez Desert Road, El Sherouk City, 11837, Egypt
Bibliografia
  • [1] K.E. Evans, M.A. Nkansah, I.J. Hutchinson, S.C. Rogers, Molecular network design, Nature 353 (1991) 124.
  • [2] K.L. Alderson, K.E. Evans, The fabrication of microporous polyethylene having a negative Poisson’s ratio, Polymer 33/20 (1993) 4435-4438.
  • [3] J.B. Choi, R.S. Lakes, Nonlinear properties of metallic cellular materials with a negative Poisson’s ratio, Journal of Materials Science 27 (1992) 5373-5381.
  • [4] J.B. Choi, R.S. Lakes, Nonlinear properties of polymer cellular materials with a negative Poisson’s ratio, Journal of Materials Science 27/17 (1992) 4678-4684.
  • [5] R.S. Lakes, K.J. Elms, Indentability of conventional and negative Poisson’s ratio foams, Journal of Composite Materials 27/12 (1993) 1193-1202.
  • [6] N. Chan, K.E. Evans, Indentation resilience of conventional and auxetic foams, Journal of Cellular Plastics 34/3 (1998) 231-260.
  • [7] C.P. Chen, R.S. Lakes, Viscoelatic behaviour of composite-materials with conventional-Poisson-ration or negative-Poisson-ratio foam as one-phase, Journal of Materials Science 28/16 (1993) 4288-4298.
  • [8] C.P. Chen, and R.S. Lakes, Micromechanical analysis of dynamic behaviour of conventional and negative Poisson’s ratio foams, Journal of Engineering Materials and Technolology 118 (1996) 285-288.
  • [9] J.B. Choi, R.S. Lakes, Fracture toughness of Re-entrant foam materials with a negative Poisson’s ratio, experiment and analysis, International Journal of Fracture 80/1 (1996) 73-83.
  • [10] H. Gercek, Poisson's ratio values for rocks, International Journal of Rock Mechanics and Mining Sciences 44/1 (2007) 1-13.
  • [11] R.S. Lakes, Design considerations for negative Poisson's [31 ratio Materials Journal of Mechanical Design 115 (1993) 696-700.
  • [12] H. Hertz, Über die Berührung fester elastischer Körper, [32 Journal of Maths (Crelle J) 92 (1881) 156.
  • [13] S.P. Timoshenko, Theory of elasticity, McGraw-Hill, New York, 1970.
  • [14] K.L. Alderson, A.F. Fitzgerald, K.E. Evans, The strain [33 dependent indentation resilience of auxetic microporous polyethylene, Journal of Materials Science 35 (2000) 4039-4047.
  • [15] A. Alderson, A triumph of lateral thought, Chemistry and Industry 10 (1999) 384-391.
  • [16] K.E. Evans, A. Alderson, Auxetic materials: Functional materials and structures from lateral thinking, Advanced Materials 12/9 (2000) 617-628.
  • [17] R.S. Lakes, Foam structures with a negative Poisson’s ratio, Science 235/4792 (1987) 1038-1040.
  • [18] B. Brandel, R.S. Lakes, Negative Poisson’s ratio polyethylene foams, Journal of Materials Science 36 (2001) [37 5885-5893.
  • [19] B.D. Caddock, K.E. Evans, Microporous materials with negative Poisson's ratios. II, Mechanisms and interpretation, Journal of Physics D: Applied Physics 22 (1989) 1883-1887.
  • [20] A.N. Sherbourne, M.D. Pandey, Proceedings of the “Engineering Mechanics Specialty Conference” ASCE’1991, Columbus, 1991, 841.
  • [21] R.G. Zhang, H.L. Yeh, H.Y. Yeh, A preliminary study of negative Poisson's ratio of laminated fiber reinforced composites, Journal of Reinforced Plastics and Composites 17/18 (1998) 1651-1664.
  • [22] R.G. Zhang, H.L. Yeh, H.Y. Yeh, A discussion of negative Poisson's ratio design for composites, Journal of Reinforced Plastics and Composites 18/17 (1999) 15461556.
  • [23] F. Homand-Etienne, R. Houpert, Thermally induced microcracking in granites: characterization and analysis, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 26/2 (1989) 125-134.
  • [24] A. Nur, G. Simmons, The effect of saturation on velocity in low-porosity rocks, Earth and Planetary Science Letters 7/2 (1969) 183-193.
  • [25] A. Yeganeh-Haeri, D.J. Weidner, J.B. Parise, Elasticity of α-cristobalite: A silicon dioxide with a negative Poisson's ratio, Science 2575070 (1992) 650-652.
  • [26] A. Alderson, K.E. Evans, Rotation and dilation deformation mechanisms for auxetic behaviour in the a-cristobalite tetrahedral framework structure, Physics and Chemistry of Minerals 28/10 (2001) 711-718.
  • [27] J.N. Grima, R. Jackson, A. Alderson, K.E. Evans, Do zeolites have negative Poisson's ratios, Advanced Materials 12/24 (2000) 1912-1918.
  • [28] P.J. Stott, R. Mitchell, K.L. Alderson, A. Alderson, A growing industry, Materials World 8 (2000) 12-14.
  • [29] A. Alderson, J.A. Rasburn, K.E. Evans, An auxetic filter, A tuneable filter displaying enhanced sizes electivity or defueling properties, Industrial and Engineering Chemistry Research 39 (2000) 654.
  • [30] J.B. Choi, R.S. Lakes, Design of a fastener based on negative Poisson's ratio foam, Cellular Polymers 10 (1991) 205-212.
  • [31] M.A. Loureiro, R.S. Lakes, Scale-up of transformation of negative Poisson's ratio foam: Slabs, Cellular Polymers 16 (1997) 349-363.
  • [32] Y.C. Wang, R. Lakes, Analytical parametric analysis of the contact problem of human buttocks and negative Poisson's ratio foam cushions, International Journal of Solids and Structures 39 (2002) 4825-4838.
  • [33] M. Burke, A stretch of the imagination, New Scientist 154 (1997) 36-39.
  • [34] P.J. McMullan, Textile fibres engineered from molecular auxetic polymers, http://www.ptfe.gatech.edu/faculty/mcmullan/paper.php.
  • [35] X. Huang, S. Blackburn, Developing a new processing route to manufacture honeycomb ceramics with negative Poisson’s ratio, Key Engineering Materials 206-213 (2001) 201-204.
  • [36] M. Avellanads, P.J. Swart, Calculating the performance of 1-3 piezo composites for hydrophone applications: An effective medium approach, Journal of the Acoustical Society of America 103/3 (1998)1449-1467.
  • [37] W.A. Smith, US Patent No. 5334903, 1994.
  • [38] K.L Alderson, A. Alderson, G. Smart, V.R. Simkins, P.J. Davies, Auxetic polypropylene fibres, Part 1, Manufacture and characterisation, Plastics, Rubber and Composites 31/8 (2002) 344-349.
  • [39] K.E. Evans, Tailoring the negative Poisson’s ratio, Chemistry and Industry 20 (1990) 654-657.
  • [40] V.R. Simkins, N. Ravirala, P.J. Davies, A. Alderson, K.L. Alderson, An experimental study of thermal postproduction processing of auxetic polypropylene fibres, Physica Status Solidi 245 (2008) 598-605.
  • [41] A.E.H. Love, A Treatise on the mathematical theory of elasticity, Dover, New York, 1944.
  • [42] Y. Guo, I.W. Goddard, Is carbon nitride harder than diamond? No, but its grith increases when stretched (Negative Poisson’s ratio), Chemical Physics Letters 237 (1995) 72-76.
  • [43] R.H. Baughman, D.S. Galvao, Crystalline network with unusual predicted mechanical and thermal properties, Nature 365 (1993) 735-737.
  • [44] V.A. Lubarda, M.A. Meyers, On the negative Poisson ratio in monocrystalline zinc, Scripta Materialia 40/8 (1999) 975-977. M. Rovati, On the negative Poisson's ratio of an orthorhombic alloy, Scripta Materialia 48 (2003) 235-240.
  • [45] M. Rovati, Directions of auxeticity for monoclinic crystals, Scripta Materialia 51 (2004) 1087-1091.
  • [46] M. Rovati, Directions of auxeticity for monoclinic crystals, Scripta Materialia 51 (2004) 1087-1091.
  • [47] N.R. Keskar, J.R. Chelikowsky, Negative Poisson ratios in crystalline SiO2 from first-principles calculations, Nature 358 (1992) 222-224.
  • [48] C. Sanchez-Valle, S.V. Sinogeikin, Z.A. Lethbridge, R.I. Walton, C.W. Smith, K.E. Evans, J.D. Bass, Ab initio structural, elastic, and vibrational properties of carbon nanotubes Physical Review B 59 (1999) 12678-12688.
  • [49] K. Nakamura, M. Wada,S. Kuga, T. Okano, Poisson's ratio of cellulose Iß and cellulose II, Journal of Polymer Science Part B: Polymer Physics 42/7 (2004) 1206-1211.
  • [50] F.K. Abdel-Sayed, R. Jones, I.W. Burgens, Theoretical approach to the deformation of honeycomb based composite-materials, Composites 10/4 (1979) 209-214.
  • [51] K.E. Evans, A. Alderson, F.R. Attenborough, Auxetic twodimensional polymer networks: An example of tailoring geometry for specific mechanical properties, Journal of the Chemical Society, Faraday Transactions 91 (1995) 2671-2680.
  • [52] F.R. Attenborough, Ph.D. Thesis, University of Liverpool, UK, 1997.
  • [53] M.A. Nkansah, K.E. Evans, I.J. Hutchinson, Modelling the mechanical properties of an auxetic molecular network, Modelling and Simulation in Materials Science and Engineering 2 (1994) 337-352.
  • [54] A.C. Griffin. S. Kumar, P.J. McMullan, NTC Project, M04-GT21, http://www.ptfe.gatech.edu/faculty/mcmullan/paper.php. [59]
  • [55] P. Aldred, S.C. Moratti, Dynamic simulations of potentially auxetic liquid-crystalline polymers incorporating swivelling mesogens, Molecular Simulation 31/13 (2005) 883-887.
  • [56] G.Y. Wei, Design of auxetic polymer self-assemblies Physica Status Solidi 242/3 (2005) 742-748.
  • [57] J.N. Grima, K.E. Evans, Auxetic behaviour from rotating squares, Journal Of Materials Science Letters 19 (2000) 1563-1565.
  • [58] U.H.F. Bunz, Y. Rubin, Y. Tobe, Polyethynylated cyclic pi-systems: scaffoldings for novel two and three-dimensional carbon networks, Chemical Society Reviews 28/2 (1999) 107-119.
  • [59] J.N. Grima, R. Gatt, A. Alderson, K.E. Evans, On the auxetic properties of ‘rotating rectangles’ with different connectivity, Journal of the Physical Society of Japan 7/104 (2005) 2866-2867.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-94807caa-8b44-4ccd-a8fc-fcdb3c6e361e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.