PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Axisymmetric solutions to the Cauchy problem for time-fractional diffusion equation in a circle

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Cauchy problems for time-fractional diffusion equation with delta pulse initial value of a sought-for function is studied in a circle domain in the axisymmetric case under zero Dirichlet and Neumann boundary conditions, respectively. The Caputo fractional derivative is used. The Laplace and finite Hankel integral transforms are employed. The results are illustrated graphically.
Twórcy
autor
  • Institute of Mathematics and Computer Science Jan Długosz University in Częstochowa al. Armii Krajowej 13/15, 42-200 Częstochowa, Poland
  • European University of Informatics and Economics in Warsaw (EWSIE) ul. Białostocka 22/11, 03-741 Warsaw, Poland
Bibliografia
  • [1] A. Pękalski, K. Sznajd-Weron (Eds.) Anomalous Diffusion: From Basics to Applications. Springer, Berlin, 1999.
  • [2] R. Hilfer (Ed.) Applications of Fractional Calculus in Physics. World Scientific, Singapore, 2000.
  • [3] R. Metzler, J. Klafter. The random walk's guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep., 339, 1-77, 2000.
  • [4] G.M. Zaslavsky. Chaos, fractional kinetics, and anomalous transport. Phys. Rep., 371, 461-580, 2002.
  • [5] B.J. West, M. Bologna, P. Grigolini. Physics of Fractal Operators. Springer, New York, 2003.
  • [6] R. Metzler, J. Klafter. The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A: Math. Gen., 37, R161-R208, 2004.
  • [7] R.L. Magin. Fractional Calculus in Bioengineering. Begell House Publishers, Connecticut, 2006.
  • [8] V.V. Uchaikin. Method of F ractional Derivatives. Artishock, Ulyanovsk, 2008. (In Russian).
  • [9] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo. Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam, 2006.
  • [10] Y.Z. Povstenko. Fractional radial diffusion in a cylinder. J. Mol. Liq., 137, 46-50, 2008.
  • [11] N. Özdemir, D.Karadeniz. Fractional diffusion-wave problem in cylindrical coordinates. Phys. Lett. A, 372, 5968-5972, 2008.
  • [12] N. Özdemir, D. Karadeniz, B.B. Iskender. Fractional optimal control problem of a distributed system in cylindrical coordinates. Phys. Lett. A, 373, 221-226, 2009.
  • [13] E.K. Lenzi, L.R. da Silva, A.T. Silva, L.R. Evangelista, M.K. Lenzi. Some results for a fractional diffusion equation with radial symmetry in a confined region. Physica A, 388, 806fi810, 2009
  • [14] H. Qi, J. Liu. Time-fractional radial diffusion in hollow geometries. Meccanica, 45, 577-583, 2010.
  • [15] Y. Povstenko. Analysis of fundamental solutions to fractional diffusionwave equation in polar coordinates. Scientific Issues, Jan Długosz University of Częstochowa, Mathematics, XIV, 97-104, 2009.
  • [16] I.N. Sneddon. The Use of Integral Transforms. McGraw-Hill, New York, 1972.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9471dbbd-c11e-40a6-a2b9-65c31e0ea75d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.