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Abstract. The Cauchy problems for time-fractional diffusion equation with delta
pulse initial value of a sought-for function is studied in a circle domain in the axisym-
metric case under zero Dirichlet and Neumann boundary conditions, respectively.
The Caputo fractional derivative is used. The Laplace and finite Hankel integral
transforms are employed. The results are illustrated graphically.

1. Introduction

The time-fractional diffusion equation

(0%

%:aAu, 0<a<2, (1)
is a mathematical model of a wide range of important physical phenomena in
amorphous and porous materials, fractals, disordered media, dielectrics and
semiconductors, geophysical and geological processes, medicine and biological
systems [1-8].

In Eq. (1), we use the Caputo fractional derivative [9]
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where I'(z) is the gamma function. The Laplace transform rule for the Caputo
derivative has the following form:

r du(t) | _ ap = k) [ F\ ca—1—k

{ T }_5 {u®)} = > u®(0)s ., n—-l<a<n, (3)
k=0

with s being the transform variable.

Several problems for time-fractional diffusion equation in a cylinder were
considered in [10-14]. In this paper we investigate the Cauchy problems with
delta function initial value of a sought-for function in a circle domain under
zero Dirichlet and Neumann boundary conditions, respectively, and compare
the obtained results with the corresponding solution in an infinite domain.

2. The Cauchy problem in an infinite domain

In order to gain a better insight of the considered problem in a circle, we
recall the corresponding result for the infinite domain [15|. Let us study the
Cauchy problem for time-fractional diffusion equation under delta-function
initial condition for a sought-for function:
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e a<8r2+r8r)’ <t < oo, <r < oo, (4)
t=0: u=-L6,(r), O<a<2, (5)
27r -
ou
t=0: —= 1 <2
0: 5 =0, <a< (6)
As usually, we impose the zero condition at infinity:
lim u(r,t) =0. (7)
r—00

Using the Laplace transform with respect to time ¢ and the Hankel transform
with respect to the spatial coordinate r, we obtain
—1
«_ P 5"
w=———— 8
27 5% 4 af?’ (8)
where the asterisk denotes the transforms.
Inversion of the Laplace transform is carried out in terms of the Mittag-
Leffler functions

[e.o] Zn
EQ(Z) = nzzom, o > 0, A C, (9)



Axisymmetric solutions to time-fractional diffusion equation 111

N

—0.1 |

—0.2 | | | |
0 0.5 1.0 1.5 2.0 2.5
F

Fig. 1. Dependence of solution on the similarity variable
(the Cauchy problem with the delta pulse initial condition)

due to the following formula [9]

st _ 250
Thus, we get
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The similarity variable 7, new integration variable 1 and nondimensional
solution @ are defined as

r

\/ata/Q’
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Hence,
1 o

=5 [ Eal=n") Jo(Fn) ndn. (13)
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The behavior of the solution at the origin was analyzed in [15], where it was
shown that only the fundamental solution to the classical diffusion equation
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(o« = 1) has no singularity at the origin. For 0 < o < 1 and 1 < o < 2 the
solution has the logarithmic singularity at the origin:

1

" —a) Inr. (14)

Dependence of nondimensional solution @ on nondimensional distance 7 is
shown in Fig. 1.

3. The Cauchy problem in a circle with zero
Dirichlet boundary condition

Consider the following initial-boundary value problem for time-fractional dif-
fusion equation:

o“u Pu 1 0u
570 <6r2+r8r)’ 0<t<oo, 0<r<R, (15)
—_q- _ P
t=0: u= 04(r), 0<a<2, (16)
2rr
ou
ar Sas (17)
r=R: u=0. (18)

The finite Hankel transforms are used in cylindrical coordinates in the
domain 0 < r < R. The form of the finite Hankel transform depends on the
type of boundary conditions at r = R. We restrict ourselves to the finite
Hankel transform of the zeroth order. For Dirichlet boundary conditions with
the given boundary value of a function at r = R we have [16]

R
HOF(r)} = 1*(En) = /0 £(r) Jo(€nr) rdr (19)
with the inverse transform
—1(D l]0 gn )
H O (&)} = f(r RQZf (&) ey (20)

where &, are positive zeros of the transcendental equation

Jo(R&n) = 0. (21)
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Fig. 2. Dependence of solution on distance
(the zero Dirichlet boundary condition; x = 0.5).

The following formula plays important role in applications of the finite Hankel
transform:

o [f(r) | 1df(r)
H(>{ dr2 +; dr

} 2 (e + Ren (R (R).  (22)

The integral transform technique allows us to get the solution in the trans-
form domain:
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. , 23
“ 21 s + a2 (23)
and after inversion we arrive at the series representation of the solution:
(o]
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we have

I (26)

Figure 2 shows the dependence of the solution (26) on distance for k = 0.5.

4. The Cauchy problem in a circle with zero
Neumann boundary condition

Now we study the time-fractional diffusion equation in a circle under delta
pulse initial condition and zero Neumann boundary condition:

%: (%JF%%)’ O0<t<oo, 0<r<R, (27)
t=0: u:%&r() 0<a<2, (28)
t=0: %:0, l<a<?, (29)

r=R: %:0. (30)

For the Neumann boundary condition with the given value of normal
derivative of a function, the corresponding finite Hankel transform is defined
as [16]:

R
HOLF(r)} = F(60) = /0 £ () Jo(rén) dr, (31)
having the inverse
MO (€)= S RQEf e S

where £, are nonnegative roots of the transcendental equation

Ji1(RE) = 0. (33)

To obtain the correct results, it should be emphasized that Eq. (33) also has
the root £y = 0 which should be taken into consideration.
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Fig. 3. Dependence of solution on distance
(the zero Neumann boundary condition; x = 0.5).

The following formula explains importance of the finite Hankel transform

of such a type for Neumann boundary value problems:

d’f 1df df

HO {d— T } = —€2f*(&n) + RJo(REn) ( ar >r:R'

Thus, we obtain

b
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and
b = 2 0 J()(’I"fn)
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TR? nzo ) T2 (Rew)

or in terms of nondimensional quantities (25)

(34)

(35)

(36)

(37)

Dependence of the solution (37) on distance for x = 0.5 is depicted in Fig. 3.
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5. Concluding remarks

The results given by Eqgs. (26) and (37) and displayed in Figures 2 and 3 are
the primary results of this paper. The parameter x describes nondimensional
time and in the case of the wave equation (o = 2) the values 0 < kK < 1
and k = 1 correspond to two characteristic cases: the wave front does not
yet arrive at the boundary, and the wave front arrives at the boundary. For
0<a<landl < « < 2in the case k = 0.5 the solution does not “feel”
the type of the boundary condition: the curves in Figs. 2 and 3 are very
similar and do not differ essentially from the corresponding curves obtained
for unbounded domain (see Fig. 1), including the logarithmic singularity at
the origin. But for x = 1 the situation changes substantially.
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