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Abstract
The paper is devoted to the study of wave phenonremee-dimensional continuous mec
caused by moving forces, exerted by contact wittisarete dynamical model. The discussiol
connected with the interaction between pantograpdh taction. In partiular, coupling between tf
contact wires durindravel of two trains on neighbouring tracks via thgport system is examin
The influence of the travelling speeds on the Bwius studied, maximal deflections, contact foi
and loss of contact areanitored during numerical simulatiol

INTRODUCTION

In the analysis of transportation systems, int&d$abetween fast moving and immol
objects play a major role. In railway research tlo& one hand, there is the contact betw
rails and wheels, whicits essential for the support of the load of theislehits guidance an
the propulsion. On the other hand, the energy sufipl the propulsion by an electric
locomotive or the engines of EMU trains is depemndenthe contact between pantogra
and a traction wire [1,7,8,103,16,17]. In the latter case, the contact foregescansiderabl
smaller, however, a continuous electrical contast to be maintained. The contact partn
here comparatively light and soft, as comparedhéorail bedded c a typical subgrade. Sint
the train, in general, is moving with a certaineshethe forces by which its pantographs
on the wire generate dynamic deflections in thetiwa [1,3,7,8,16]. These are propagal
along the wire, being reflected at sugts and boundaries, transmitted to supporting w
and even parallel contact wires, causing nontriviggractions with the given and possil

other pantographs.
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In order to minimize fluctuations in the contactdes it is desirable to maintain a nearly
constant height of the contact wire. To this endessenger wire is spanned above the actual
contact wire, thus keeping the pantograph in alpeanstant configuration. Both wires are
periodically connected by droppers of varying |ésgtConsequently, waves running in the
contact wire, initiated by the travelling force,rspd in both wires, which form a two-
dimensional network together with the coupling greqs. A typical layout of a span width
between two posts is presented in Fig. 1. Crossosscand the principle of the hangers can
be seen in Fig. 2.

At the end of each span of the traction, weighésatached to maintain a tension in the
wires that guarantees a wave speed larger thasped of travel. This way critical cases as
discussed in previous papers [7,8] are to be adoiBespite this, and a security factor of
more than 1.5, instability effects can still be @tved in practice. In particular, the interaction
between two or more pantographs, by means of the, wan lead even to the destruction of
pantograph and rupture of the contact wire. Whilddrger distances, the bending stiffness of
the used wires, see Fig. 2 below, is mostly negtedh the case of two pantographs mounted
on the same locomotive bending effects may be @aken

In certain locations, e.g. at stations, the tractibove several parallel tracks is suspended
from wires perpendicular to the tracks, rather tiram individual posts for each track. In this
case, the two-dimensional network is extended @ tthird dimension. Coupling between
neighboring lines has to be considered. A reductibrspeed may be required, if trains
running in opposite direction meet at such a placé,one train is overtaking another one.

The problem of travelling loads has attracted latjention in the past, mostly the case of
a priory known forces, constant or harmonic, waalyed, cf. [2,5,12] and cited there
sources. At first analytical methods were appliteeén more and more numerical approaches
were developed, e.g. [2,9]. Extensions to two-disi@mal and nonlinear problems were
studied as well [5,14]. The case of an oscillatovimg along a track [3], proposed by the first
author in 1976, was the prototype of the problestuksed here, where a MultiBody System
(MBS) is coupled with a continuum. Recently, see fl,4,7,8,17], research of this aspect of
discrete-continuous co-simulation gained momentum.

In publications [16,17] Matlab/Simulink solutionsere developed to attempt an active
control of the MBS. Wavelet based analytical toadsre been proposed as well, [15]. The
importance of nonlinear effects was discussed &}, [dhowing that the modeling of droppers
needs special attention.

This present paper is organized as follows. Infitst section, the traction is analyzed,
some basic information on wave propagation, inipaer in the context of travelling loads, is
provided. Next in Section 2, a pantograph is matlakea MBS. Then in Section 3 numerical
experiments with the model composed of both compisnare carried out. The results are
summarized in Sec. 4.

1. TRACTION

In this section the continuous subsystem, withnii@én focus of the contact wire, will be
discussed. For a single wire, allowing for bendstiffness, the equation of motion has the
form [3,7,8]

p()ux)=f(xt) — (Sx)uxt)"+Pu(xt))". (1)

Here we denote b$the bending stiffness of the medium, fothe mass density per unit
of length and by the compressing force. Time is denoted,hyosition along the wire by,
the corresponding partial derivatives are indicdbyda superposed dot or an apostrophe,
respectively.
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This equation, describing a Bernoulli-Euler Beamdéegenerate parabolic, and it admits
wave type solutions. Depending on the type of bamndaonditions, standing as well as
running waves may be observed. In general, digpestcurs, i.e., the propagation speed of
waves depends of their frequency.

Fig. 2. Cross sections of supporting and contact wires

The external forcé may be as a first approach modeled as a Diradhidiibn, which is
concentrated in each momentat the pointVt, whereV is the travelling speed of the
pantograph. In a typical traction wir§,may be neglected in a first approximation, &
negative. This leads in the case of very flexibktia to the simplified equation

pil(x,t) — ctu(x,)"=f(xt) (2)

The coefficientc? is introduced for the ratio of tensidhto mass density. Notice that
often there appears the paramdtgfor tension), insteadf P, in the literature on beams. We
prefer to reserv@ for the duration of transient processes and tothsgarameter nanieas
it is being used in papers on columns.

Technically, the tension is maintained by concreégghts of about two metrical tons of
mass, see Fig. 3.

I

Fig. 3. Applying tension at the end of wires
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Physically, each wire has a length of the orderwé kilometer, which would allow
solving initial-boundary value problems on a findemain. However, additionally to the
boundary conditions, in models of traction integfamonditions at suspenders and hangers
have to be included, see Fig. 4.

Fig. 4. Structure of a suspension

Further, at the end of a length of wire, the nene s guided in, while the previous one is
lead to the side and slightly up, and next to th&t pvith the weight, see Fig. 5.
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Fig. 6. Two tracks with common suspensions

More details on geometry and mechanical paramet@nsbe found e.g. in [10,11,13]
and [18].
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2. PANTOGRAPH

The simplest way to model the interaction betweemaving object and its immobi
contact partner like a rail or a contact wire iagsume a constant or periodic force, actir
a point located at positiox=Vt, wherex is the coordinate along the tkad/ is the traveling
speed and is the elapsed time. While e.g. in the case ol-wheel contact in certai
situations quite acceptable, for the interactiothwa wire, i.e. an object with very sm
bending stiffness and rather large distance betwsupports, realistic results cannot
expected that way. It is essential to allow foruécky reduction of the modulus of the verti
force, when the wire is elevated at the momentahjcle positiorx. Further, the dynamics
the pantograph has to bekéen into account, see Fig. 7. Within reasonabterracy this cal
be achieved by the introduction of three degreefreddom, assuming line-viscoelastic
forces in the joints and in the contact. This asidsmore equations of motion to the syst
obtaned so far from the discretization of the contaicé)
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Fig. 7. Pantograph as MBS

It is acceptable and recommendable to considerrtids and lines constituting tl
pantograph as inflexible, respectively not streddaotherwise e.g. elastic mbody systems
would have to be introduced. This would furtheraegé the number of unknowns in 1
model. Obviously, in the case of multiple pantotpgpor more than one train, e.g. two tre
running on parallel tracks at different velocitiesjn thecase of different constructions of t
pantograph, the number of degrees of freedom hlas toodified in a suitable we

Assume the generalized coordinates, which desdtiee angles of the arms of t
pantograph against the vehicle's roof, and thewxce between the contact wire and the en
the upper arm, are denoted i, g andgz. Together they form the vector of generali
positionsq, the corresponding generalized velocities 4. Introducing generalized mass
and forces, one can easily faulate the equations of motion in the f

£ (Ma®) = Q(ba(®), gOC(D),0, 1D,DU (D)D) 3)

where on the lefikand side, there are the time derivatives of threegdized moments, whi
on the righthand side, the forces depend on positionsvelocities of the contact partners
the point of contact.

3. NUMERICAL CALCULATIONS

Solutions of the hyperbolic partial differential usqion of second order (2) can
obtained in terms of the initial deflections antegrals over initial speed and exial force.
Assuming constant coefficients and zero forces,samytion of equation (2) on the whole r
axis x € R has the following forn

u(xt)=@x+ct)+P(x — ct) (4)
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An initial displacement, concentrated around thgioy splits into two waves,ne running
left, the other right, with equal but opposite sfelhe function:® and ¥ can be identified
from initial conditionsu(-,0) on the deflection and on the initial lateral, iupward, spee
v(-,0) =u(-,0)

In the case of the forth ordequation (1), solutions are assumed in the formuohing
waves with a speed depending on the frequency,ehigriivite series have to be discuss
We refer to our paper [7].

Parameters for numerical calculations can be foundi], [7,8], [13], [18]. Typical
tensions are around 20 kN, the mass density otdmeact wire is around 1.33 kg/m. £
Fig. 2 for the cross sections of messenger and contiaes.wihe mean value of the late
force is set to 200N for the present calculatic

Figure 8 presesta typical result, as previously shown in [7], whegjuation (1) is solve
without any interface conditions and the load beaipglied by a massless spring. There ar
supports in this case, yet the solution stays bedrdle to the reaction of the pograph’s
decreasing contact force, when the wire moves afn@y it. In the pure string case
equation (2), the solution is a fuzzy version o€ tbharacteristic cone of the classi
hyperbolic problem. When allowing for bending stéts, ripples appr in front and behin:
the disturbed area, see Fig. 8
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Fig. 8. Wave type traveling force solution to equationr{g¢ylecting interface conditio

In [7] and [8], also the case of several pantogsgmiessed to the same contact wire
discussed in this academic setting, i.e. negleatadjstic interface conditions. It was sho
that the second pantograph runs into the wakeeoletiding one, b also disturbances from
trailing pantograph may reach the leading one aaubke& considerable fluctuations in
contact forces.

In realistic constructions as e.g. in Figs. 1, 56granalytical considerations beco
insufficient due to the heterogens structure of the system and the large numbe
reflections overlaying each other. Consequentlynenical approximations are required.
the following Figs. 9 and 10, a direct computatimna fifth order ODE solver applied
equations obtained fromi) by the method of lines, and then coupled widh \{&s usec
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Fig. 9. Deflections at various speeds for one and two ggaphs in conta
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Fig. 10. Deflections at various speeds for-stressed system

In both figures, the elevation of ticontact wire is shown, in Fig. 9 the case of ong
two pantographs are compared, the three curvesspond to the recommended maxin
speed, the critical and a supercritical velocitythad vehicle. In Fig. 10, the sensitivity to |
dropper model istown. Here once more the case of a single pantbgdayt with pr-
stressed droppers, was simulated,

SUMMARY

Modeling the coupled motion of one or several pgraphs in contact with the tracti
over one or several railway vehicles requires table combination of methods developed
the description of ondimensional continuous media like strings and bearitls solution
techniques for mechanical multibody systems. A mpjoblem are the countless couplir
with the suspension system. As opyd to the very regular periodic support by sleejretbe
case of traveling loads of railway vehicles on tthesck, the droppers from messenger wir
contact wire feature different lengths, so thatl#teral stiffness of the catenary is variable
acomplex way, cf. [7]. Numerical tests show that tloamlinearity of the characteristic of t
droppers must not be neglected, i.e., there sHmlab pushing forces in slack wit

Further, the traveling load, which in models of nmgyvforces on railwaytrack can be
assumed a harmonic function in the time varid, needs to be calculated by simulating
motion of the pantograph, which features at leastdrms connected by a joint and a sg-
damper element maintaining contact with the wirealfirst approximation, this s-system
may be treated as linear in the vicinity of the kiog point, as far as small variations in -
height of the contact wire and small deflections ba assume

Analytical solutions to problems of wave propagatio ideally flexible as well as i
bending stiff wires, which can be studied by clealsformulas, give some hints on stabi
constraints in the present case. The most essdatidr is the relation between traveli
speed of the vehicle and the velocity wave propagation in the continuous medi
However, in real world problems the interface ctinds and nonlinearity effects make a 1
analytical study unfeasible. Instead, a dynamipgir@ach in the time domain as well as
analysis of eigenforms aneigenfrequencies of the system have to be appfiedrder tc
evaluate the amplitude of deflections by numenathods

In the present analysis, the dynamics of the paiapty modeled as a mi-body system,
is coupled with a finite difference discization of the contact and messenger wires. No&
traveling force is no longer f-assigned, it is dependent on the history of thetswi for the
wire deflection in the point of contact. This isp&rticular importance if multiple pantograg
in a slort distance between each other are consideredwhad there is a coupling betwe
several parallel contact wires, e.g. with trainsning at high speed in opposite directit
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EFEKTY FALOWE W SPRZ EZONYCH
UKELADACH PANTOGRAFU | TRAKCJI

Streszczenie

W pracy zbadanegszjawiska falowe w jednowymiarowyckradkach ciggtych, wywotane sitami
ruchomymi, ktérymi spezony uktad dyskretny oddziatuje z uktadem jednowsowigch elementéw
ciggtych. Uklady tego typu majznaczenie w modelowaniu interakcji pedazy pantografem a
kolejowg siecy zasilagcy.

W szczegolngi analizowany jest efekt sgeenia zachodzy podczas przejazdu dwoch pa@w
po ssiadugcych torach. Wplyw ppdkasci poruszagcych sg pociggdw na maksymalne
przemieszczenia, sity kontaktowe oraz gtkamntaktu odbieraka pdu z sieqr badany jest za pom@c
numerycznych symulacji komputerowych.
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