PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis and design of photovoltaic pumping system based on nonlinear speed controller

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents an analysis by which the dynamic performances of a permanent magnet brushless DC (PMBLDC) motor is controlled through a hysteresis current loop and an outer speed loop with different controllers. The dynamics of the photovoltaic pumping drive system with sliding mode speed controllers are presented. The proposed structure is comprised of a photovoltaic generator associated to a DC-DC converter controlled by fuzzy logic to ensure maximum power point tracking. The PWM signals are generated by the interaction of the motor speed closed-loop system and the current hysteresis. The motor reference current is compared with the motor speed feedback signal. The considered model has been implemented in the Matlab /Simpower environment. The results show the effectiveness of the proposed method in increasing the performance of the water pumping system.
Rocznik
Strony
40--48
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
autor
  • Faculty of Sciences & Technology, Bordj Bou Arreridj University, Algeria
autor
  • Faculty of Sciences & Technology, Bordj Bou Arreridj University, Algeria
autor
  • Laboratoire d’automatique, University of Setif 1, Algeria
autor
  • Faculty of Sciences & Technology, Bordj Bou Arreridj University, Algeria
Bibliografia
  • [1] C.-H. Lin, C.-H. Huang, Y.-C. Du, J.-L. Chen, Maximum photovoltaic power tracking for the pv array using the fractional-order incremental conductance method, Applied Energy 88 (12) (2011) 4840–4847.
  • [2] A. El Shahat, Pv module optimum operation modeling, Journal of Power technologies 94 (1) (2014) 50.
  • [3] A. Betka, A. Moussi, Maximum efficiency of an induction motor fed by a photovoltaic source, Larhyss Journal (02) (2003) 151–162.
  • [4] P. Bajpai, V. Dash, Hybrid renewable energy systems for power generation in stand-alone applications: a review, Renewable and Sustainable Energy Reviews 16 (5) (2012) 2926–2939.
  • [5] A. Hamidat, A. H. Arab, M. Boukadoum, Performances et coûts des systèmes de pompage pv en algérie, Rev. Energ. Ren 8 (2005) 157–166.
  • [6] A. Terki, A. Moussi, A. Betka, N. Terki, An improved efficiency of fuzzy logic control of pmbldc for pv pumping system, Applied Mathematical Modelling 36 (3) (2012) 934–944.
  • [7] A. Betka, A. Moussi, Performance optimization of a photovoltaic induction motor pumping system, Renewable energy 29 (14) (2004) 2167–2181.
  • [8] I. Odeh, Y. Yohanis, B. Norton, Influence of pumping head, insolation and pv array size on pv water pumping system performance, Solar energy 80 (1) (2006) 51–64.
  • [9] A. Betka, A. Attali, Optimization of a photovoltaic pumping system based on the optimal control theory, Solar Energy 84 (7) (2010) 1273–1283.
  • [10] A. Tofighi, Performance evaluation of pv module by dynamic thermal model, Journal of Power Technologies 93 (2) (2013) 111.
  • [11] K. Hussein, I. Muta, T. Hoshino, M. Osakada, Maximum photovoltaic power tracking: an algorithm for rapidly changing atmospheric conditions, in: Generation, Transmission and Distribution, IEE Proceedings-, Vol. 142, IET, 1995, pp. 59–64.
  • [12] BP Solar BP SX150-150W Multi-crystalline Photovoltaic Module Datasheet, 2001.
  • [13] M. Gupta, R. Jain, A. Goswami, Design and simulation of photovoltaic system using advance mppt, International Journal of Advance Technology & Engg. Research 2 (2012) 73–76.
  • [14] I. Purnama, Y.-K. Lo, H.-J. Chiu, A fuzzy control maximum power point tracking photovoltaic system, in: fuzzy systems (FUZZ), 2011 IEEE international conference on, IEEE, 2011, pp. 2432–2439.
  • [15] F. Aashoor, F. Robinson, Maximum power point tracking of photovoltaic water pumping system using fuzzy logic controller, in: Power Engineering Conference (UPEC), 2013 48th International Universities’, IEEE, 2013, pp. 1–5.
  • [16] A. Kerboua, Hybrid fuzzy sliding mode control of a doubly-fed induction generator speed in wind turbines, Journal of Power Technologies 95 (2) (2015) 126.
  • [17] A. Terki: controle flou-genetique hybride d’un moteur BLDC dans un système de pompage photovoltaique. (2011) Ph.D Thesis, university of Biskra, Algérie.
  • [18] C. Umayal, D. S. Devi, Modeling and simulation of pfc sepic converter fed pmbldc drive for mining application, International Journal of Advanced Trends in Computer Science and Engineering 2 (2) 203–208.
  • [19] C. Navaneethakkannan, M. Sudha, Minimum rule based pid sliding mode fuzzy control techniques for brushless dc drives, International Journal of Advances in Engineering Technology 4 (2).
  • [20] J.-J. E. Slotine, Sliding controller design for non-linear systems, International Journal of control 40 (2) (1984) 421–434.
  • [21] V. I. Utkin, Sliding mode control design principles and applications to electric drives, Industrial Electronics, IEEE Transactions on 40 (1) (1993) 23–36.
  • [22] V. I. Utkin, Variable structure systems with sliding modes, IEEE Transactions on Industrial Informatics (2).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-946f1b36-e563-4fae-b1a8-ef5aee3041e6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.