Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We describe a novel high efficiency element based on a binary-phase metal-based sandwiched grating, where the binary grating is covered by a dielectric layer and connected by a metal slab on the fused-silica substrate. The modal method is used to optimize the grating duty cycle and period to analyze the feasibility to achieve high efficiency for TE and TM polarizations by effective indices of the modes excited in the grating region. Rigorous coupled-wave analysis (RCWA) is employed to optimize the grating depth and to cover the layer thickness accurately by numerical calculations. It is not easy for the conventional binary grating with a usual duty cycle to achieve high efficiency in the –1st order for TM polarization. For the binary-phase metal-based sandwiched grating, high efficiency can be diffracted into the –1st order for not only TE polarization but also TM polarization. Moreover, the wide fabrication tolerance, the wideband property and the flat surface of easy cleaning should be significant for practical applications in a variety of optical systems.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
607--613
Opis fizyczny
607--613 Bibliogr. 14 poz., rys., wykr.
Twórcy
autor
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
autor
autor
autor
Bibliografia
- [1] YU J., ZHOU C., JIA W., HU A., WANG S., MA J., Circular Dammann grating under high numerical aperture focusing, Applied Optics 51(7), 2012, pp. 994–999.
- [2] FOLEY J.M., ITSUNO A.M., DAS T., VELICU S., PHILLIPS J.D., Broadband long-wavelength infrared Si/SiO2 subwavelength grating reflector, Optics Letters 37(9), 2012, pp. 1523–1525.
- [3] TONCHEV S., JOURLIN Y., VEILLAS C., REYNAUD S., LYNDIN N., PARRIAUX O., LAUKKANEN J., KUITTINEN M., Subwavelength cylindrical grating by holistic phase-mask coordinate transform, Optics Express 20(7), 2012, pp. 7946–7953.
- [4] PENG Z., FATTAL D.A., FARAON A., FIORENTINO M., LI J., BEAUSOLEIL R.G., Reflective silicon binary diffraction grating for visible wavelengths, Optics Letters 36(8), 2011, pp. 1515–1517.
- [5] ESTRUCH T., JAECK J., PARDO F., DERELLE S., PRIMOT J., PELOUARD J.-L., HAIDAR R., Perfect extinction in subwavelength dual metallic transmitting gratings, Optics Letters 36(16), 2011, pp. 3160–3162.
- [6] CHEN Y., LIU W., Design and analysis of multilayered structures with metal-dielectric gratings for reflection resonance and color generation, Optics Letters 37(1), 2012, pp. 4–6.
- [7] BOTTEN I.C., CRAIG M.S., MCPHEDRAN R.C., ADAMS J.L., ANDREWARTHA J.R., The dielectric lamellar diffraction grating, Optica Acta 28(3), 1981, pp. 413–428.
- [8] MOHARAM M.G., POMMET D.A., GRANN E.B., GAYLORD T.K., Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach, Journal of the Optical Society of America A 12(5), 1995, pp. 1077–1086.
- [9] ZHANG Y., ZHOU C., High-efficiency reflective diffraction gratings in fused silica as (de)multiplexers at 1.55 μ m for dense wavelength division multiplexing application, Journal of the Optical Society of America A 22(2), 2005, pp. 331–334.
- [10] WANG S., ZHOU C., ZHANG Y., RU H., Deep-etched high-density fused-silica transmission gratings with high efficiency at a wavelength of 1550 nm, Applied Optics 45(12), 2006, pp. 2567–2571.
- [11] JIA W., ZHOU C., FENG J., DAI E., Miniature pulse compressor of deep-etched gratings, Applied Optics 47(32), 2008, pp. 6058–6063.
- [12] WANG S., ZHOU C., RU H., ZHANG Y., Optimized condition for etching fused-silica phase gratings with inductively coupled plasma technology, Applied Optics 44(21), 2005, pp. 4429–4434.
- [13] BRÜCKNER F., KROKER S., FRIEDRICH D., KLEY E.-B., TÜNNERMANN A., Widely tunable monolithic narrowband grating filter for near-infrared radiation, Optics Letters 36(4), 2011, pp. 436–438.
- [14] HU A., ZHOU C., CAO H., WU J., YU J., JIA W., Polarization-independent wideband mixed metal dielectric reflective gratings, Applied Optics 51(20), 2012, pp. 4902–4906.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-946d18d1-e87e-43de-a2e7-2ec3439e6160