PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Systematic error of acoustic particle image velocimetry and its correction

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Particle Image Velocimetry is getting more and more often the method of choice not only for visualization of turbulent mass flows in fluid mechanics, but also in linear and non-linear acoustics for non-intrusive visualization of acoustic particle velocity. Particle Image Velocimetry with low sampling rate (about 15Hz) can be applied to visualize the acoustic field using the acquisition synchronized to the excitation signal. Such phase-locked PIV technique is described and used in experiments presented in the paper. The main goal of research was to propose a model of PIV systematic error due to non-zero time interval between acquisitions of two images of the examined sound field seeded with tracer particles, what affects the measurement of complex acoustic signals. Usefulness of the presented model is confirmed experimentally. The correction procedure, based on the proposed model, applied to measurement data increases the accuracy of acoustic particle velocity field visualization and creates new possibilities in observation of sound fields excited with multi-tonal or band-limited noise signals.
Rocznik
Strony
447--460
Opis fizyczny
Bibliogr. 18 poz., rys., tab., wykr.
Twórcy
  • West Pomeranian University of Technology, Szczecin, Faculty of Electrical Engineering, ul. Sikorskiego 31, 70-313 Szczecin, Poland, +48 91 449 5205
Bibliografia
  • [1] Westerweel, J. (2000). Theoretical analysis of the measurement precision in particle image velocimetry. Experiments in Fluids, Suppl. S3-S12.
  • [2] Boillot, A., Prasad, A.K. (1996). Optimization procedure for pulse separation in cross-correlation PIV. Exp. Fluids, 21, 87-93.
  • [3] Raffel, M., Willert, C., Kompenhans, J. (2007). Particle image velocimetry: a practical guide. Springer, Berlin, New York, Heidelberg.
  • [4] Westerweel, J. (1993). Digital particle image velocimetry - Theory and application. Ph.D. Thesis. Delft University.
  • [5] Moreau, S., Bailliet, H., Valiere, J-Ch., Boucheron, R., Poignand, G. (2009). Development of Laser Techniques for Acoustic Boundary Layer Measurements. Part II: Comparison of LDV and PIV Measurements to Analytical Calculations. Acta Acoustica united with Acoustica, 95, 805-813.
  • [6] Hann, D. B., Greated, C. A. (1997). The measurement of flow velocity and acoustic particle velocity using particle image velocimetry. Meas. Sci. Technol. 1517-1522.
  • [7] Nabavi, M., Siddiqui, K., Dargahi, J. (2007). Simultaneous measurement of acoustic and streaming velocities using synchronized PIV technique. Meas. Sci. Technol., 18, 1811-1817.
  • [8] Skulina, D.J., MacDonald, R., Campbell, D.M. (2005). PIV Applied to the Measurement of the Acoustic Particle Velocity at the Side Hole of a Duct. Procedings of ForumAcusticum 2005. Budapest.
  • [9] Tonddast-Navai, A. (2005). Acoustic Particle-Image Velocimetry Development and Applications. Ph.D. Thesis. Open University, Milton Keynes, UK.
  • [10] MacDonald, R., Skulina, D.J., Campbell, D.M., Valiere, J.Ch., Marx, D., Bailliert, H. (2010). PIV and POD Applied to High Amplitude Acoustic Flow at a Tube Termination. Procedings of 10-eme Congres Francais d’Acoustique, Lyon.
  • [11] Nabavi, M., Siddiqui, K., Dargahi, J. (2008). Measurement of the acoustic velocity field of nonlinear standing waves using the synchronized PIV technique. Experimental Thermal and Fluid Science, 33, 123-131.
  • [12] Fischer, A., Sauvage, E., Röle, I. (2008). Acoustic PIV: Measurements of the acoustic particle velocity using synchronized PIV-technique. Proceedings of 14th Int Symp on Applications of Laser Techniques to Fluid Mechanics. Lisbon.
  • [13] Weyna, S., Mickiewicz, (2014). Phase-Locked Particle Image Velocimetry Visualization of the Sound Field at the Outlet of a Circular Tube. Acta Physica Polonica A, 125(4-A), A-108-112.
  • [14] Snyder, W.H., Lumley, J.L. (1971). Some measurements of particle velocity autocorrelation functions in a turbulent flow. J. Fluid Mech., 48, 41-71.
  • [15] Siegel, D.A., Plueddemann, A.J. (1991). The motion of a solid sphere in an oscillating flow: an evaluation of remotely sensed Doppler velocity estimates in the sea. J. Atmos. Ocean. Technol., 8, 296-304.
  • [16] Jacobsen, F., De Bree, H-E. (2005). A Comparison of two different sound intensity measurement principles. J Acoust Soc Amer, 118(3), 1510-1517.
  • [17] Weyna, S., Mickiewicz, W., Pyła, M., Jabłoński, M. (2013). Experimental acoustic flow analysis inside a section of an acoustic waveguide. Archives of Acoustics, 38(2), 211-216.
  • [18] Mickiewicz, W., Pyła, M., Jabłoński, M. (2011). Automatized system for 3D sound intensity field measurement. Proceedings of 16th International Conference on Methods and Models in Automation and Robotics. Międzyzdroje.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-946b823e-ce0e-4eb1-9ac2-caf5d1f078c2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.