PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evolution of the geomorphology of erodible bedform submitted to fluid

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A coupled map lattice (CML) model was developed to study the evolution of desert’s geomorphology. The numerical results show that the model presents abundant spatiotemporal patterns. In spatial behaviors, the model illustrates the mechanism of both weakly and strongly coupled systems. In temporal behaviors, the model illustrates the stochastic effects. The model is able to demonstrate the physically layered coupling mechanism and shows the initiative and driven coupled systems. The evolutional processes of the model are also analyzed with physical geomorphological laws. The desert’s geomorphologic forms, such as sand ripples and dunes, result from the combined actions of deterministic and stochastic effects. Verified by the field data, this study qualitatively illustrates the geomorphologic evolution of desert. Moreover, the model is applicable to the evolution of ripples and dunes with loose sand caused by water currents on fluvial beds, e.g., river beds in the lower reaches of the Yellow River, China.
Słowa kluczowe
Rocznik
Strony
365--–383
Opis fizyczny
Bibliogr. 61 poz., rys.
Twórcy
autor
  • Chongqing Jiaotong University, 107#, Dahuang Road, Daping, Yuzhong District, Chongqing, 400074, P.R. China
autor
  • Chongqing Jiaotong University, 107#, Dahuang Road, Daping, Yuzhong District, Chongqing, 400074, P.R. China
Bibliografia
  • 1. G.D. Ding, Status and prospect of study on two focuses in aeolian physics, Journal of Desert Research, 28:395-398, 2008 [in Chinese].
  • 2. Q.H. Zhang, T.D. Miao, Surface waves in aeolian bedforms, Physics Letters A, 372, 3429–3433, 2008.
  • 3. I.K. McEWAN, B.B. Willetts, On the prediction of bed-load sand transport rate in air, Sedimentology, 41, 1241–1251, 1994.
  • 4. P.J. Spies, I.K. McEWAN, G. R. Butterfield, On wind velocity profile measurements taken in wind tunnels with saltating grains, Sedimentology, 42, 515–521, 1995.
  • 5. M. Sorensen, I.K. McEWAN, On the effect of mid-air collisions on aeolian saltation, Sedimentology, 43, 65–76, 1996.
  • 6. M.V. Carneiro, N.A.M. Araujo, T. Pahtz, H.J. Herrmann, Midair collisions enhance saltation, Physical Review Letters, 111, 058001, 2013.
  • 7. I.K. McEwan, Bagnold’s kink: a physical feature of a wind velocity profile modified by blown sand? Earth Surface Processes and Landforms, 18, 2, 145–156, 1993.
  • 8. K. Pye, N. Lancaster, Aeolian sediments: ancient and modern (Special publication 16 of the IAS), Blackwell, Oxford, UK, 1993.
  • 9. S.E. Coleman, V.I. Nikora, B.W. Melville et al., SWAT.nz: New-Zeland-based “Sand Waves and Turbulence” experimental programme, Acta Geophysica, 56, 2, 417–439, 2008.
  • 10. S.E. Coleman, V.I. Nikora, Fluvial dunes: initiation, characterization, flow structure, Earth Surface Processes and Landforms, 36, 39–57, 2011.
  • 11. V.I. Nikora, D.G. Goring, B.J.F. Biggs, On gravel-bed roughness characterization, Water Resources Research, 34, 517–527, 1998.
  • 12. A. Singh, M. Guala, S. Lanzoni, E. Foufoula-Georgiou, Bedform effect on the reorganization of surface and subsurface grain size distribution in gravel bedded channels, Acta Geophysica, 60, 1607–1638, 2012.
  • 13. A. Singh, E. Foufoula-Georgiou, F. Porté-Agel, P.R. Wilcock, Coupled dynamics of the co-evolution of gravel bed topography, flow turbulence and sediment transport in an experimental channel, Journal of Geophysical Research, 117, F04016, 2012.
  • 14. K. Kaneko, Pattern dynamics in spatiotemporal chaos, Physica D, 34, 1–41, 1989.
  • 15. M.C. Cross, P.C. Hohenberg, Pattern formation out of equilibrium, Review Modern Physics, 65, 851–1112, 1993.
  • 16. J. A. Acebrón, L.L. Bonilla, C.J. Pérez Vicente, F. Ritort, R. Spigler, The Kuramoto model: a simple paradigm for synchronization phenomena, ReviewModern Physics, 77, 137–185, 2005.
  • 17. J.P. Gollub, J.S. Langer, Pattern formation in nonequilibrium physic, Review Modern Physics, 71, 5396–5403, 1999.
  • 18. G. Dangelmayr, L. Oprea, Dynamics and Bifurcation of Patterns in Dissipative Systems, World Scientific Publishing Press, Singapore, 2004.
  • 19. T. Bohr, M.H. Jensen, G. Paladin, A. Vulpiani, Dynamical Systems Approach to Turbulence, Cambridge University Press, Cambridge, UK, 1998.
  • 20. T.B. Liverpool, S.F. Edwards, Dynamics of a meandering river, Physical Review Letters, 75, 16, 3016–3019, 1995.
  • 21. B.F. Edwards, D.H. Smith, River meandering dynamics, Physical Review E, 65, 4, 046303(1-12), 2008.
  • 22. E. Somfai, L.M. Sander, Scaling and river networks: a Landau theory for erosion, Physical Review E, 56, 1, 1–4, 1997.
  • 23. D.O. Maionchi, A.F. Morais, R.N. Costa Filho, J.S. Andrade, Jr., H.J. Herrmann, Model for erosion-deposition patterns, Physical Review E, 77, 061402, 2008.
  • 24. S.G. de Bartolo, L. Primavera, R. Gaudio, A. D’Ippolito, M. Veltri, Fixedmass multifractal analysis of river networks and braided channels, Physical Review E, 74, 026101, 2006.
  • 25. A.P. Mehta, C. Reichhardt, C.J. Olson, F. Nori, Topological invariants in microscopic transport on rough landscapes: morphology, hierarchical structure, and Horton analysis of river-like networks of vortices, Physical Review Letters, 82, 18, 3641–3644, 1999.
  • 26. F. Engelund, J. Fredsoe, Sediment ripples and dunes, Annual Review of Fluid Mechanics, 14, 13–37, 1982.
  • 27. K. Kroy, G. Sauermann, H.J. Herrmann, Minimal model for aeolian sand dunes, Physical Review E, 66, 031302, 2002.
  • 28. H. Elbelrhiti, P. Claudin, B. Andreotti, Field evidence for surface-wave induced instability of sand dunes, Nature, 437 (7059), 720–723, 2005.
  • 29. B. Andreotti, P. Claudin, O. Pouliquen, Aeolian sand ripples: experimental evidence of fully developed states, Physical Review Letters, 96, 028001, 2006.
  • 30. G. Seminara, Fluvial sedimentary patterns, Annual Review of Fluid Mechanics, 42, 43– 66, 2010.
  • 31. R.J. Huggett, Dissipative systems: implications for geomorphology, Earth Surface Processes and Landforms, 13, 1, 45–49, 1988.
  • 32. B. Sivakumar, Chaos theory in geophysics: past, present and future, Chaos, Solitons and Fractals, 19, 2, 441–462, 2004.
  • 33. J.D. Phillips, Self-organization and landscape evolution, Progress in Physical Geography, 19, 3, 309–321, 1995.
  • 34. V.P. Singh, Hydrologic synthesis using entropy theory: review, Journal of Hydrologic Engineering, ASCE, 16, 421–433, 2011. 382 Z.-C. Liu, W.-J. Fan
  • 35. A.R. Vasconcellos, J.G. Ramos, R. Luzzi, Ensemble formalism for nonequilibrium systems and an associated irreversible statistical, Brazilian Journal of Physics, 35, 689– 717, 2005.
  • 36. X.S. Xing, Dynamic statistical information theory, Science in China: Series G, 49, 1–37, 2006.
  • 37. B.L. Yang, Thermodynamics rational reconstruction and dialectic unification of maximum entropy principle and minimum entropy production rate–re-explore “rational principles” in natural science study, World Science, 40–42, 2003 [in Chinease].
  • 38. R.A. Bagnold, The Physics of Blown Sand and Desert Dunes, London, Methuen Corporation, UK, 1941.
  • 39. N. Chien, Z.H. Wan, Mechanics of Sediment Transport, ASCE Press, Reston. USA, 1999.
  • 40. A. Fourriere, P. Claudin, B. Andreotti, Bedforms in a turbulent stream: formation of ripples by primary linear instability and of dunes by nonlinear pattern coarsening, Journal of Fluid Mechanics, 649, 287–328,2010.
  • 41. C. Mendoza, H.W. Shen, Investigation of turbulent flow over dunes, Journal of Hydraulic Engineering ASCE, 116, 459–477, 1990.
  • 42. V.D. Nikora, A.N. Sukhodolov, P.M. Rowinski, Statistical sand wave dynamics in one-directional water flows, Journal of Fluid Mechanics, 351, 17–39, 1997.
  • 43. S. Ha, G.R. Dong, G.Y. Wang, Morphodynamic study of reticulate dunes at southeastern fringe of the Tengger Desert, Science in China (Series D), 42, 207–215, 1999.
  • 44. S.B. Idso, Surface energy balance and the genesis of deserts, Arch. Met. Geoph. Biokl., Ser. A, 30, 253–260, 1981.
  • 45. X. Wei, Z.B. Li, Applicative limitations of sediment transport on predictive modeling in geomorphology, Journal of Geographical Science, 14, 94–104, 2004.
  • 46. M. Karpinski, R.J. Bialik, P.M. Rowinski, Application of lattice Boltzmann method for generation of flow velocity field over river bed-forms, GeoPlanet: Earth and Planetary Sciences, Experimental and Computational Solutions of Hydraulics Problems, P. Rowinski [Ed.], 327–335, 2013.
  • 47. A. Masselot, B. Chopard, A lattice Boltzmann model for particle transport and deposition, Europhysics Letters, 100, 6, 1–6, 1998.
  • 48. R.J. Bialik, V.I. Nikora, P.M. Rowiński, 3D Lagrangian modelling of saltating particles diffusion in turbulent water flow, Acta Geophysica, 60, 6, 1639–1660, 2012.
  • 49. R.J. Bialik, Numerical study of near-bed turbulence structures influence on the initiation of saltating grains movement, Journal of Hydrology and Hydromechanics, 61, 3, 202–207, 2013.
  • 50. U. Frisch, Turbulence, Cambridge University Press, Cambridge, UK, 1995.
  • 51. G. Gao, A theory of dissipation and dispersion cooperation of turbulence, Science in China (Series A), 18, 616–629, 1985.
  • 52. S.D. Liu, S.K. Liu, KdV-Burgers equation modeling of turbulence, Science in China (A), 35, 576–586, 1992.
  • 53. Z.C. Liu, Study on random and coherence states using a family of CML models, Chinese Physics B, 18, 636–645, 2009.
  • 54. M. Pineda, M.G. Cosenza, Synchronization in driven versus autonomous coupled chaotic maps, Physical Rev. E, 71, 057201, 2005.
  • 55. G. Francisco, P. Muruganandam, Local dimension and finite time prediction in spatiotemporal chaotic systems, Physical Rev. E, 67, 066204, 2003.
  • 56. I.R. Iturbe, M. Marani, R. Rigon, Self-organized river basin landscapes: fractal and multifratal characteristics, Water Resource Research, 30, 3531–3539, 1994.
  • 57. M. Colombini, Revisiting the linear theory of sand dune formation, Journal of Fluid Mechanics, 502, 1–16, 2004.
  • 58. T. Stoesser, C. Braun, M. García-Villalba, W. Rodi, Turbulence structures in flow over two-dimensional dunes, Journal of Hydraulic Engineering, ASCE, 134, 42–55, 2008.
  • 59. P. Claudin, B. Andreotti, A scaling law for aeolian dunes on Mars, Venus, Earth, and for subaqueous ripples, Earth Plan. Sci. Lett., 252, 20–44, 2006.
  • 60. V. Nikora, D. Goring, Spectral scaling in Mars topography: effect of craters, Acta Geophysica, 54, 1, 102–112, 2006.
  • 61. V. Nikora, D. Goring, Mars topography: bulk statistics and spectral scaling, Chaos, Solitons, and Fractals, 19, 2, 427–439, 2004.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-946af590-36eb-4ebb-a3f3-0cdccee941b7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.