Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
First-principles density functional formulation was used to explore the electronic and optical properties of magnesium chalcogenides sulfides, MgXS3 (X = Ti and Zr), which compose of magnesium titanium sulfide, MgTiS3, and magnesium zirconium sulfide, MgZrS3. The lattice parameter calculations for MgZrS3 yielded 9.19 Å, a bulk modulus of 170.6 GPa, and an equilibrium volume of 423.03 Å3. In contrast, MgTiS3 yielded 9.27 Å, a bulk modulus of 251.3 GPa, and an equilibrium volume of 117.06 3 Å3. The computation gave a direct bandgap value for MgTiS3 and MgZrS3 of 1.1 eV and 1.3 eV, respectively. The dielectric constants of 38 and 32 were observed for the imaginary and real values for energy equivalents of 0.7 eV and 1.35 eV. The determined dielectric constants and energy values of the perovskite compounds were 70 and 1.35 eV respectively with their point of intersection also at this bandgap value. The efficiency of the compounds was calculated using the spectroscopic limited maximum efficiency (SLME) in order to ascertain their output as absorber materials. The findings show that MgZrS3 had a higher efficiency value of 32.54% and MgTiS3 with 29.45%. These compounds’ computed properties point to the possibility of creating inexpensive, non-toxic absorber layer materials for use in solar cell development and other electronic applications.
Wydawca
Czasopismo
Rocznik
Tom
Strony
943--954
Opis fizyczny
Bibliogr. 86 poz., fot., rys., tab., wzory
Twórcy
autor
- University of Lagos, Faculty of Science, Department of Physics, Akoka, Lagos, Nigeria
autor
- University of Lagos, Faculty of Science, Department of Physics, Akoka, Lagos, Nigeria
autor
- University of Lagos, Faculty of Science, Department of Physics, Akoka, Lagos, Nigeria
- School of Science and Technology, Pan-Atlantic University, Ibeju-Lekki, Lagos, Nigeria
autor
- University of Lagos, Distance Learning Institute, Akoka, Lagos, Nigeria
autor
- University of Lagos, Faculty of Science, Department of Physics, Akoka, Lagos, Nigeria
Bibliografia
- [1] M.A. Green, Prog. Photovoltaics 20, 472-76 (2012). DOI: https://doi.org/10.1002/pip.1147
- [2] K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, K. Yamamoto, Nat. Energy 2, 17032 (2017). DOI: https://doi.org/10.1038/nenergy.2017.32
- [3] H.J. Snaith, Nat. Mater. 17, 372-376 (2018). DOI: https://doi.org/10.1038/s41563-018-0071-z
- [4] T. Sato, S. Takagi, S. Deledda, B.C. Hauback, S. Orimo, Extending the applicability of the Goldschmidt tolerance factor to arbitrary ionic compounds. Sci. Rep. 6, 23592 (2016).
- [5] C.-S Lee, K.M. Kleinke, H. Kleinke, Synthesis, structure, and electronic and physical properties of the two SrZrS3 modifications. Solid State Sci. 7, 1049-1054 (2005).
- [6] S. Hasan, P. Adhikari, K.Baral, W.-Y. Ching, Conspicuous interatomic bonding in chalcogenide crystals and implications on electronic, optical, and elastic properties. AIP Adv. 10, 075216 (2020).
- [7] M.G. Kanatzidis Chalcogenides: Solid-State Chemistry based in part on the article Chalcogenides: Solid State Chemistry by Patricia M. Keane which appeared in the Encyclopedia of Inorganic Chemistry, First Edition. in Encyclopedia of Inorganic Chemistry; John Wiley & Sons, Ltd.: Chichester, UK, pp. 1-39 (2006).
- [8] N.P. Papoh, Introductory Chapter: Chalcogen Chemistry-The Foot-print into New Materials Development. In Chalcogen Chemistry; Intech Open: London, UK, pp. 1-7 (2018).
- [9] A. Nijamudheen, A.V. Akimov, Criticality of Symmetry in Rational Design of Chalcogenide Perovskites. J. Phys. Chem. Lett. 9, 248-257 (2018).
- [10] W.;Meng, B. Saparov, F. Hong, J.Wang, D.B. Mitzi, Y. Yan, Alloying and Defect Control within Chalcogenide Perovskites for Optimized Photovoltaic Application. Chem. Mater. 28, 821-829 (2016).
- [11] X.-K. Liu, F. Gao, Organic-Inorganic Hybrid Ruddlesden-Popper Perovskites: An Emerging Paradigm for High-Performance Light-Emitting Diodes. J. Phys. Chem. Lett. 9, 2251-2258 (2018).
- [12] R. Nechache, C. Harnagea, S. Li, W. Huang, W. Cardenas, J. Chakrabartty, F. Rosei, Bandgap Tuning of Multiferroic Oxide Solar Cells. Nat. Photonics 9, 61 (2001).
- [13] Z. Fan, K. Sun, J. Wang, Perovskites for Photovoltaics: A Combined Review of Organic-Inorganic Halide Perovskites and Ferroelectric Oxide Perovskites. J. Mater. Chem. A. 3, 18809-18828 (2015).
- [14] W. Meng, B. Saparov, F. Hong, J. Wang, D.B. Mitzi, Y. Yan, Alloying and Defect Control within Chalcogenide Perovskites for Optimized Photovoltaic Application Alloying and Defect Control within Chalcogenide Perovskites for Optimized Photovoltaic Application. Chem. Mater. 283, 821-829 (2016).
- [15] R. Pandey, S. Sivaraman, Spectroscopic properties of defects in alkaline-earth sulfides. J. Phys. Chem. Solids. 52, 1, 211-225 (1991).
- [16] S. Niu, J. Milam-Guerrero, B.C. Melot, Thermal stability study of transition metal perovskite sulfides. J. Mater. Res. 24, 4135-4143 (2018).
- [17] S. Asano, N. Yamashita, Y. Nakao, Luminescence of the Pb2+ -ion dimer center in CaS and CaSe phosphors. phys. status solidi (b). 89, 2, 663-673 (1978).
- [18] X. Wei, H. Hui, C. Zhao, C. Deng, M. Han, Z. Yu, A. Sheng, P. Roy, A. Chen, J. Lin, Realization of BaZrS3 chalcogenide perovskite thin films for optoelectronics. Nano Energy 68, 104317 (2020).
- [19] S. Perera, H. Hui, C. Zhao, H. Xue, F. Sun, C. Deng, N. Gross, C. Milleville, X. Xu, D.F. Watson, B. Weinstein, Y.Y. Sun, S. Zhang, H. Zeng, Chalcogenide perovskites - an emerging class of ionic semiconductors. Nano Energy 22, 129-135 (2016)
- [20] M. Ju, J. Dai, L. Ma, X. C. Zeng, Perovskite Chalcogenides with Optimal Bandgap and Desired Optical Absorption for Photovoltaic Devices. Adv. Energy Mater. 8, 2-8 (2017).
- [21] A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder , K.A. Persson, Apl Mater. 1, 011002 (2013).
- [22] W. Shockley, H.J. Queisser, J. Appl. Phys. 32, 510 (1961).
- [23] L. Yu, A. Zunger, Phys. Rev. Lett. 108, 068701 (2012).
- [24] W.-J. Yin, T. Shi, Y. Yan, Adv. Mater. 26, 4653-4658 (2014).
- [25] W.-J. Yin, J.-H. Yang, J. Kang, Y. Yan , S.-H. Wei, J. Mater. Chem. A. 3, 8926-8942 (2015).
- [26] W.-J. Yin, T. Shi, Y. Yan, J. Phys. Chem. C. 119, 5253-5264 (2015).
- [27] W. Meng, B. Saparov, F. Hong, J. Wang, D.B. Mitzi, Y. Yan, Chem. Mater. 28, 821-829 (2016).
- [28] F. Hong, W. Lin, W. Meng, Y. Yan, Phys. Chem. Chem. Phys. 18, 4828-4834 (2016).
- [29] N. Sarmadian, R. Saniz, B. Partoens, D. Lamoen, Submitted for publication, arXiv:1605.05842.
- [30] I.-H. Lee, J. Lee, Y.J. Oh, S. Kim, K. J. Chang, Phys. Rev. B 90, 115209 (2014).
- [31] Y.J. Oh, I.-H. Lee, S. Kim, J. Lee , K.J. Chang, Sci. Rep. 5, 18086 (2015).
- [32] L. Yu, R.S. Kokenyesi, D.A. Keszler, A. Zunger, Adv. Energy Mater. 3, 43-48 (2012).
- [33] T. Yokoyama, F. Oba, A. Seko, H. Hayashi, Y. Nose, I. Tanaka, Appl. Phys. Express 6, 061201 (2013).
- [34] J. Heo, R. Ravichandran, C.F. Reidy, J. Tate, J.F. Wager, D.A. Keszler, Adv. Energy Mater. 5, 1401506 (2014).
- [35] X. Huang, T.R. Paudel, S. Dong, E.Y. Tsymbal, Phys. Rev. B 92, 125201 (2015).
- [36] P. Reinhard, A. Chirila, P. Blosch, F. Pianezzi, S. Nishiwaki, S. Buecheler, A.N. Tiwari, IEEE J. Photovolt. 3, 572-580 (2013).
- [37] Solar Frontier Achieves World Record Thin-Film Solar Cell Efficiency: 22.3%., Retrieved March 10, (2016) from www.solarfrontier.com/eng/news/2015/C051171.
- [38] G. Cheek, F. Yang, H. Lee, 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC), 2013.
- [39] Y. Peng, Q. Sun, H. Chen, W. J. Yin, Disparity of the Nature of the Band Gap between Halide and Chalcogenide Single Perovskites for Solar Cell Absorbers. J. Phys. Chem. Lett. 10, 4566-4570 (2019).
- [40] M.W. Wang, M.C. Phillips, J.F. Swenberg, E.T. Yu, J.O. McCaldin, T.C. McGill, n-CdSe/p-ZnTe based wide bandgap light emitters: Numerical simulation and design. J. Appl. Phys. 73, 9, 4660-4668 (1993).
- [41] P. Gao, M. Grätzel, M.K. Nazeeruddin, Organohalide Lead Perovskites for Photovoltaic Applications. Energy Environ. Sci. 7, 2448-2463 (2014).
- [42] J. He, C. Franchini, J.M. Rondinelli, Ferroelectric Oxides with Strong Visible-light Absorption from Charge Ordering. Chem. Mater. 29, 2445-2451 (2017).
- [43] C. Paillard, X. Bai, I.C. Infante, M. Guennou, G. Geneste, M. Alexe, J. Kreisel, B. Dkhil, Photovoltaics with Ferroelectrics: Current Status and Beyond. Adv. Mater. 28, (33), 5153-5168 (2016).
- [44] A. Swarnkar, V.K. Ravi, A. Nag, Beyond Colloidal Cesium Lead Halide Perovskite Nanocrystals: Analogous Metal Halides and Doping. ACS Energy Lett. 2, 1089-1098 (2017).
- [45] M.V. Kovalenko, L. Protesescu, M.I. Bodnarchuk, Properties and Potential Optoelectronic Applications of Lead Halide Perovskite Nanocrystals. Science 358, 745-750 (2017).
- [46] Q. Xu, D. Yang, J. Lv, Y.Y. Sun, L. Zhang, Perovskite Solar Absorbers: Materials by design. Small Methods 2, 1700316 (2018).
- [47] V.K. Ravi, N. Singhal, A. Nag, Initiation and Future Prospects of Colloidal Metal Halide Double-Perovskite Nanocrystals: Cs2Ag-BiX6 (X = Cl, Br, I). J. Mater. Chem. A 6, 21666-21675 (2018).
- [48] W. Kohn, P. Hohenberg, Phys. Rev. B 136, 864 (1964).
- [49] W. Kohn, L.J. Sham, Phys. Rev. 140, 1133 (1965).
- [50] M. Born, R. Oppenheimer, Ann. Phys. 389, 457 (1927).
- [51] P. Giannozzi et al., J. Phys.: Condens. Matter. 29, 465901 (2017). http://www.quantum-espresso.org/quote
- [52] S. Baroni, S. De Gironcoli, A. Dal Corso, P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001).
- [53] S. Baroni, P. Giannozzi, E. Isaev, Rev. Mineral. Geochem. 71, 39 (2010).
- [54] W.E. Pickett, Comput. Phys. Rep. 9, 115 (1989).
- [55] A. Kokalj, J. Mol. Graph. Model. 17, 176-179 (1999). Code available from http://www.xcrysden.org/
- [56] X. C. Liu, R. Hong, C. Tian, Tolerance factor and the stability discussion of ABO3-type ilmenite”. Journal of Materials Science: Materials in Electronics 20 (4), 323-327 (2008).
- [57] W. Shockley, H.J. Queisser, J. Appl. Phys. 32, 510-519 (1961).
- [58] L. Yu, A. Zunger, Phys. Rev. Lett. 108, 068701 (2012).
- [59] I. Sadeghi, K. Ye, M. Xu, Y. Li, J.M. Lebeau, R. Jaramillo, Adv. Funct. Mater. 31, 2105563 (2021). DOI: https://doi.org/10.1002/adfm.202105563
- [60] K. Kuhar, A. Crovetto, M. Pandey, K.S. Thygesen, B. Seger, P.C. K. Vesborg, O. Hansen, I. Chorkendorff, K.W. Jacobsen, Sulfide Perovskites for Solar Energy Conversion Applications: Computational Screening and Synthesis of the Selected Compound LaYS3. Energy Environ. Sci. 10, 2579-2593 (2017).
- [61] R.O. Balogun, M.A. Olopade, O.O. Oyebola, A.D. Adewoyin, First-principle calculations to investigate structural, electronic and optical properties of MgHfS3. Materials Science and Engineering B: Solid-State Materials for Advanced Technology 273, 115405. (2021).
- [62] D. Liu, H. Zeng, H. Peng, R. Sa, Phys. Chem. Chem. Phys. (2023). DOI: https://doi.org/10.1039/D3CP01522J
- [63] R. Chamia, A. Lekdadrib, L.H. Omari, E.K. Hlil, M. Chafia, Investigation of the photovoltaic properties of BaHf1-x Zrx S3(x<-1) Chalcogenide Perovskites using First Principle Calculations. Materials Today Energy (2021). DOI: https://doi.org/10.1016/j.mtener.2021.100689
- [64] S.J. Adjogri, E.L. Meyer, Chalcogenide Perovskites and Perovskite-based Chalcohalide as Photoabsorbers: A Study of Their Properties, and Potential Photovoltaic Applications. Materials 14, 7857 (2021). DOI: https://doi.org/10.3390/ma14247857
- [65] D. Li, F. Ling, Z. Zhu, X. Zhang, Theoretical structural electronic and optical properties of Cu2CdGeSe4. Physica B. 406, 3299 (2011).
- [66] S. Niu, H. Huyan, Y. Liu, M. Yeung, K. Ye, L. Blankemeier, T. Orvis, D. Sarkar, D.J. Singh, R. Kapadia, J. Ravichandran, Adv. Mater. 29, 1604733 (2017).
- [67] N.A. Moroz, C. Bauer, L. Williams, A. Olvera, J. Casamento, A.A. Page, T.P. Bailey, A. Weiland, S.S. Stoyko, E. Kioupakis, C. Uher, J.A. Aitken, P.F.P. Poudeu, Inorg. Chem. 57, 7402-7411 (2018).
- [68] M. Ong, D.M. Guzman, Q. Campbell, I. Dabo, R.A. Jishi, J. Appl. Phys. 125, 235702 (2019).
- [69] A. Dolgonos, T.O. Mason, K.R. Poeppelmeier, Direct optical band gap measurement in polycrystalline semiconductors: A critical look at the Tauc method. J. Solid State Chem. 240, 43-48 (2016).
- [70] Z. Xiao, Y. Zhou, H. Hosono, T. Kamiya, N.P. Padture, Bandgap Optimization of Perovskite Semiconductors for Photovoltaic Applications. Chem.-Eur. J. 24, 2305-2316 (2018).
- [71] M.S. Dresselhaus, Solid State Phys. Part II Opt. Propert. Solid. 23, 56-66(2001).
- [72] E. Osei-Agyemang, G. Balasubramanian, Understanding the Extremely Poor Lattice Thermal Transport in Chalcogenide Perovskite BaZrS3. ACS Applied Energy Materials 3 (1), 1139-1144 (2020).
- [73] H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976).
- [74] J. Hwang, R.R. Rao, L. Giordano, Y. Katayama, Y. Yu, Y. Shao-Horn, Perovskites in Catalysis and Electrocatalysis. Science 358, 751-756 (2017).
- [75] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865-3868 (1996).
- [76] J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 100, 136406 (2008).
- [77] A. Jodlowski, D. Rodríguez-Padró, R. Luque, G. de Miguel, Alternative Perovskites for Photovoltaics. Adv. Energy Mater. 8, 1703120 (2018).
- [78] M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, J. Phys.: Condens. Matter. 14, 2717 (2002).
- [79] Y. Sun, M.L. Agiorgousis, P. Zhang, S. Zhang, Chalcogenide Perovskites for Photovoltaics. Nano Lett. 15, 581-585 (2015).
- [80] F.D. Murnaghan, The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. U.S.A. 30, 244 (1944).
- [81] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A.D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, J. Phys. Condens. Matter. 21, 395502 (2009).
- [82] H.A. Kramers, Atticongr. Intern. Fisicas Trans. Volta Centenary-Cong. 22, 545-557 (1927).
- [83] Y. Cui, G. Wang, D. Pan, Synthesis and Photoresponse of Novel Cu2CdSnS4 Semiconductor Nanorods, J. Mater. Chem. 22, 12471-7 (2012).
- [84] Y.Y. Sun, M.L. Agiorgousis, P. Zhang, S. Zhang, Nano Lett. 15, 581 (2015).
- [85] W. Zachariasen, Über die Kristallstruktur des Magnesium Tellurids. Z. Phys. Chem., Stoechiom. Verwandtschaftsl. 128, 417 (1927).
- [86] H.G. Zimmer, H. Winze , K. Syassen, High-pressure phase transitions in CaTe and SrTe. Phys. Rev. B. 32, 4066-4070 (1985).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-94696623-a841-4c7b-8a48-907dd9948c31
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.