Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Optymalizacja parametrów użytkowych osłon włókninowych stosowanych w geokompozytach sorbujących wodę w strefie nienasyconej
Języki publikacji
Abstrakty
This study analyses tests influencing the selection of nonwovens for water absorbing geocomposites. The task of the nonwoven is to capture water infiltrating into the soil and to direct it to the superabsorbent located inside. The best results in the tests of water permeability (88 mm/s) and water absorption (1116.85 g/m2) were obtained for nonwoven of the lowest surface weight - 112.8 g/m2 and the largest average pore diameter - 206.5 μm. The lowest water absorption capacity (478.91 g/m2) and the smallest thickness changes under a load (19.3%) was noted in needle-punched nonwoven that had been subject to the calandering process. For one nonwoven, the presence of other significant fractions was noted, which proves that it is heterogeneous. For nonwovens applied in the unsaturated zone, not only water permeability should be taken into account, but also the size and fraction distribution of pores, in order to avoid breaking the continuity of capillaries.
W pracy przedstawiono badania właściwości włóknin, jako osłon do geokompozytów sorbujących wodę. Zadaniem włókniny jest przechwycenie filtrującej wody i przekazanie do znajdującego się wewnątrz superabsorbentu. Najlepsze wyniki w badaniu wodoprzepuszczalności (88 mm/s) i wodochłonności (1116.85 g/m2) uzyskano dla włókniny o najniższej masie powierzchniowej 112.8 g/m2 i największej średniej średnicy porów 206.5 μm. Włókninę 100% PET kalandrowaną cechowała niska wodochłonność (478.91 g/m2) i niewielkie zmiany grubości pod obciążeniem (19.3 %). Dla jednej z włóknin zanotowano obecność innych istotnych frakcji co świadczy o jej niejednorodności. W przypadku zastosowania włókniny w strefie aeracji należy zwracać uwagę nie tylko na wodoprzepuszczalność, ale i rozmiary oraz rozkład frakcyjny porów, aby nie przerwać ciągłości kapilar.
Czasopismo
Rocznik
Strony
110--116
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
- Institute of Environmental Engineering, Faculty of Environmental Engineering and Geodesy, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
autor
- Institute of Environmental Engineering, Faculty of Environmental Engineering and Geodesy, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
autor
- Institute of Civil Engineering, Faculty of Materials and Environment Science, University of Bielsko Biala, Bielsko-Biała, Poland
autor
- Institute of Environmental Engineering, Faculty of Environmental Engineering and Geodesy, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
autor
- Institute of Meteorology and Water Management - National Research Institute, Wrocław Branch, Wrocław, Poland
autor
- Institute of Environmental Engineering, Faculty of Environmental Engineering and Geodesy, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
autor
- Institute of Environmental Engineering, Faculty of Environmental Engineering and Geodesy, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
Bibliografia
- 1. Lejcuś K, Dąbrowska J, Garlikowski D and Kordas L. Water loss from soil and water absorbing geocomposite. International Proceedings of Chemical Biological & Environmental Engineering, Environmental Science and Technology VI 2015; 84: 123-127.
- 2. Górski T, Kozyra J and Doroszewski A. Field crop losses in Poland due to extreme weather conditions – case studies, In: The Influence of Extreme Phenomena on the Natural Environment and Human Living Conditions, S Liszewski (ed). Łódzkie Towarzystwo Naukowe 2008, 35-49.
- 3. Stephenson DB. Definition, diagnosis and origin of extreme weather and climate events (Chapter 1), In: Climate Extremes and Society, RJ Murnane & HF Diaz (eds.), Cambridge University Press 2008, p. 348.
- 4. IPPC. Climate Change 2001. The Scientific Basis. Contribution of the Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, JT Houghton, Y Ding, DJ Griggs, M Noguer, PJ van der Linden, X Dai, K Maskell, CA Johnson (eds.), Cambridge University Press, Cambridge, United Kingdom and New York, New York 2001, p. 881.
- 5. Frich P, Alexander LV, Dell-Marta P, Gleason B, Haylock M, Klein Tank A M G and Peterson T. Observed coherent changes in climatic extremes during the second half of the twentieth century, Climate Research 2002; 19 (3): 193-212.
- 6. Miętus M. Ekstremalne zjawiska klimatyczne z perspektywy IPCC, In: Ekstremalne zjawiska hydrologiczne i meteorologiczne, E Bogdanowicz, U Kossowska-Cezak, J Szkutnicki (eds.), PTFG, IMGW, Warszawa 2005: 19-31.
- 7. Connor R, Faurès J-M, Kuylenstierna J, Margat J, Steduto P, Vallée D, van der Hoek W. Evolution of water use. UNESCO, 2012. http://webworld.unesco.org/water/wwap/wwdr/wwdr3/pdf/18_WWDR3_ch_7.pdf [Access 18.03.2015].
- 8. Woda i rolnictwo wobec zmian klimatu, Copa-Cogeca 2011. http://www.copa-cogeca.be/img/user/file/FT_EN/DOC/5660PL.pdf [Access 18.03.2015].
- 9. Farrell C, Ang XQ and Rayner JP. Water-retention additives increase plant available water in green roof substrates. Ecological Engineering 2013; 52: 112-118.
- 10. Abedi-Koupai J, Sohrab F and Swarbrick G. Evaluation of Hydrogel Application on Soil Water Retention Characteristics. Journal of Plant Nutrition 2008; 31(2): 317-331.
- 11. Sivapalan S. Some benefits of treating a sandy soil with a cross-linked typepolyacrylamide. Australian Journal of Experimental Agriculture 2006; 46(4): 579-584.
- 12. Agaba H, Orikiriza LJB, Esegu JFO, Obua J, Kabasa JD and Hüttermann A. Effects of hydrogel amendment to different soils on plant available water and survival of trees under drought conditions. Clean – Soil, Air, Water 2010; 38 (4): 328-335.
- 13. Guilherme MR,·Aouada FA,·Fajardo AR, Martins AF,·Paulino AT, Davi MFT, Rubira AF, and Muniz EC. Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrier: A review. European Polymer Journal 2015; In Press, doi:10.1016/j.eurpolymj.2015.04.017.
- 14. Morris CE. Unsaturated flow in nonwoven geotextiles. GeoEng 2000: An International Conference on Geotechnical and Geological Engineering, Melbourne, Australia, 2000, Vol. 2, p. 322.
- 15. Iryo T and Kerry Rowe R. On the hydraulic behavior of unsaturated nonwoven geotextiles. Geotextiles and Geomembranes 2003; 21: 381-404.
- 16. Bouazza A, Zornberg JG, McCartney JS and Nahlawi H. Significance of unsaturated behaviour of geotextiles in earthen structures. Australian Geomechanics 2006; Vol. 41, 3: 133-142.
- 17. Zornberg JG, Bouazza A and McCartney JS. Geosynthetic capillary barriers: current state of knowledge. Geosynthetics International 2010; 17, 5: 273-300.
- 18. Azevedo M and Zornberg JG. Capillary barrier dissipation by new wicking geotextile. In: Advances in Unsaturated Soils, Caicedo et al. (eds), Taylor & Francis Group, London, 2013: 559–565.
- 19. Hejduk S. Evaluation of rootzone mixes and water retentive amendment materials in sports surface constructions. Report to the Stapledon Memorial Trust. Brno, Czech Republic, 2010, p. 12.
- 20. Dąbrowska J and Lejcuś K. Charakterystyka wybranych właściwości superabsorbentów. Infrastruktura i Ekologia Terenów Wiejskich 2012; 03(4): 59-68.
- 21. Orzeszyna H, Lejcuś K, Garlikowski D and Pawłowski A, Element geokompozytowy, zwłaszcza do wspomagania wegetacji roślin (Geocomposite element, particularly for enhancing plant growth). Patent No. EP2560472, PL211198, patent application US20130031831 A1, 2015. Entitled to the patent: Wrocław University of Environmental and Life Sciences.
- 22. Rowe RK (ed). Geotechnical and Geoenvironmental Engineering Handbook. Springer US, 2001, Vol. 1, p.1088.
- 23. McIsaac R and Kerry Rowe R. Effect of filter-separators on the clogging of leachate collection systems. Can Geotech J 2006; 42: 674-693.
- 24. Stormont JC, Ray C and Evans TM. Transmissivity of a Nonwoven Polypropylene Geotextile Under Suction. Geotechnical Testing Journal 2001;Vol. 24, 2: 164-171.
- 25. PN-EN ISO 9864:2007. Geosyntetyki - Metoda badań do wyznaczania masy powierzchniowej geotekstyliów i wyrobów pokrewnych.
- 26. PN-EN ISO 9863-1:2007. Geosyntetyki - Wyznaczanie grubości przy określonych naciskach -- Część 1: Warstwy pojedyncze.
- 27. PN-EN ISO 10319:2010. Geosyntetyki - Badanie wytrzymałości na rozciąganie metodą szerokich próbek.
- 28. PN-EN ISO 11058:2011. Geotekstylia i wyroby pokrewne - Wyznaczanie charakterystyk wodoprzepuszczalności w kierunku prostopadłym do powierzchni wyrobu, bez obciążenia.
- 29. PN-P-04734:1972. Metody badań wyrobów włókienniczych - Wyznaczanie wodochłonności.
- 30. Capillary Flow Porometer, Version 6.0, 1997, p. A-12.
- 31. Jena A and Gupta K. Characterization of Pore Structure of Filtration Media. Fluid Particle Separation Journal 2002; Vol. 14, 3: 227-241.
- 32. Grzybowska-Pietras J and Malkiewicz J. Influence of Technologic Parameters on Filtration Characteristics of Nonwoven Fabrics Obtained by Padding. Fibres and Textiles in Eastern Europe 2007; 5-6: 82-85.
- 33. Lejcuś K, Dąbrowska J, Garlikowski D, Śpitalniak M. The application of water-absorbing geocomposites to support plant growth on slopes. Geosynthetics International 2015; In Press, doi:10.1680/jgein.15.00025.
- 34. Wróblewska K, Dębicz R, Bąbelewski P. The influence of water sorbing geocomposite and pine bark mulching on growth and flowering of some perennial species. Acta Sci.Pol. Hortorum Cultus 2012; 11(2): 203-216.
- 35. McCartney JS, Kuhn JA and Zornberg JG. Geosynthetic Drainage Layers in Contact with Unsaturated Soils. 16th ISSMGE Conference: Geotechnical Engineering in Harmony with theGlobal Environment. 12-16 September 2005. Osaka, Japan, 2005, 2301-2305.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9463f37f-12f6-4bf1-8426-320d17e5bf81