PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Aktywowana termicznie opóźniona fluorescencja (TADF) – jako rozwiązanie problemu niskich wydajności układów fluorescencyjnych OLED

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Thermally activated delayed fluorescence – as a solution to the low yield problem of the fluorescent OLEDs
Języki publikacji
PL EN
Abstrakty
PL
Rozwój technologii wyświetlania obrazu doprowadził do opracowania ekranów typu OLED, których użycie jest coraz powszechne. Współcześnie dąży się do poprawy kwantowej wydajności (EQE) OLED. Organiczne diody elektroluminescencyjne zawsze cierpiały z powodu ograniczonej wydajności kwantowej, co jest wywołane zdolnością wykorzystania zaledwie 25% stanów wzbudzonych. TADF, czyli aktywowana termicznie opóźniona fluorescencja, umożliwia użycie do 100% stanów wzbudzonych powstających w diodzie, a zatem zmniejszeniu ulega udział bezemisyjnej relaksacji cząsteczek. Zjawisko to występuje dla cząsteczek o małej całce nakładania HOMO i LUMO, co skutkuje małą przerwą energetyczną singlet-tryplet.
EN
The development of display technology led to invention of OLED screens whose use is becoming more common nowadays. Today one of the goals is to improve OLED external quantum efficiency (EQE). Organic light-emitting diodes have always suffered from limited quantum efficiency due to harvesting of only 25% of excited states. TADF, which is thermally activated delayed fluorescence, allows to harvest up to 100% of excited states formed in the OLED, thus to decrease a contribution of the non-radiative relaxation. This phenomenon occurs for molecules possessing a small integral overlap of HOMO and LUMO, which results in a small singlet- triplet energy gap.
Słowa kluczowe
Czasopismo
Rocznik
Strony
318--325
Opis fizyczny
Bibliogr. 34 poz., rys.
Twórcy
autor
  • Katedra Fizykochemii i Technologii Polimerów, Wydział Chemiczny, Politechnika Śląska, Gliwice
Bibliografia
  • 1. Bardsley J.N.: International OLED Technology Roadmap. IEEE Journal Of Selected Topics In Quantum Electronics 2004, 10(1), 3–9.
  • 2. HYPERLINK: http://www.samsung.com/us/shop/;10.10.2015.
  • 3. Forrest S.R.: The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 2004, 428, 911–918.
  • 4. Montero Martin J.M.: Charge transport in organic semiconductors with application to optoelectronic devices. Rozprawa doktorska, Universitat Jaume I, Castelló de la Plana, Castelló, Hiszpania, 2010.
  • 5. Han T.-H., Lee Y., Choi M.-R., Woo S.-H., Bae S.-H., Hong B.H., Ahn J.-H., Lee T.-W.: Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nature Photonics 2012, 6, 105–110.
  • 6. Tsuwaki M., Kasahara T., Edura T., Matsunami S., Oshima J., Shojia S., Adachi C., Mizuno J.: Fabrication and characterization of large-area flexible microfluidicorganic light-emitting diode with liquid organic semiconductor. Sensors and Actuators A: Physical 2014, 216, 231–236.
  • 7. Geffroy B., le Roy P., Prat C.: Organic light-emitting diode (OLED) technology: materials, devices and display technologies. Polymer International 2006, 55, 572–582.
  • 8. Laba K., Data P., Zassowski P., Pander P., Lapkowski M., Pluta K., Monkman A.P.: Diquinoline Derivatives as Materials for Potential Optoelectronic Applications. Journal of Physical Chemistry C 2015, 119(23), 13129–13137.
  • 9. Santos J., Cook J.H., Al-Attar H.A., Monkman A.P., Bryce M.R.: Fluorene co-polymers with high efficiency deep blue electroluminescence. Journal of Materials Chemistry C 2015, 3, 2479–2483.
  • 10. Cook J.H., Santos J., Al-Attar H.A., Bryce M.R., Monkman A.P.: High brightness deep blue/violet fluorescent polymer light-emitting diodes (PLEDs). Journal of Materials Chemistry C 2015, 3, 9664–9669.
  • 11. Genies E.M., Hany P., Lapkowski M., Santier C.H., Olmedo L.: In situ conductivity and photoconductivity measurements of polyaniline films. Synthetic Metals 1988, 25(1), 29–37.
  • 12. Genies E.M., Lapkowski M.: Influence of light on the electrochemical behavior of polyaniline films. Synthetic Metals 1988, 24(1), 69–76.
  • 13. Tang C.W., Van Slyke S.A.: Organic electroluminescent diodes. Applied Physics Letters 1987, 51, 913–915.
  • 14. Jiang X., Register R.A., Killeen K.A., Thompson M.E., Pschenitzka F., Hebner T.R., Sturm J.C.: Effect of carbazole–oxadiazole excited-state complexes on the efficiency of dye-doped light-emitting diodes. Journal of Applied Physics 2002, 91(10), 6717–6724.
  • 15. Graves D., Jankus V., Dias F.B., Monkman A.P.: Photophysical Investigation of the Thermally Activated Delayed Emission from Films of m-MTDATA:PBD Exciplex. Advanced Functional Materials 2014, 24, 2343–2351.
  • 16. Yersin H.: Triplet Emitters for OLED Applications. Mechanisms of Exciton Trapping and Control of Emission Properties. Topics in Current Chemistry 2004, 241, 1–26.
  • 17. Adachi C., Baldo M.A., Thompson M.E., Forrest S.R.: Nearly 100% internal phosphorescence efficiency in an organic light- emitting device. Journal of Applied Physics 2001, 90, 5048–5051.
  • 18. O’Brien D.F., Baldo M.A., Thompson M.E., Forrest S.R.: Improved energy transfer in electrophosphorescent devices. Applied Physics Letters 1999, 74, 442–444.
  • 19. Hack M., Brown J.J.: OLED Excitement Phosphorescent-OLED technology, with its high luminous efficiency, is the key to OLED penetration of the display and lighting markets, and in other markets as well. Information Display 2004, 20, 12–17.
  • 20. Sivasubramaniam V., Brodkorb F., Hanning S., Loebl H.P., van Elsbergen V., Boerner H., Scherf U., Kreyenschmidt M.: Fluorine cleavage of the light blue heteroleptic triplet emitter FIrpic. Journal of Fluorine Chemistry 2009, 130, 640–649.
  • 21. Uoyama H., Goushi K., Shizu K., Nomura H., Adachi C.: Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 2012, 492, 234–238.
  • 22. Wu S., Aonuma M., Zhang Q., Huang S., Nakagawa T., Kuwabara K., Adachi C.: High-efficiency deep-blue organic light-emitting diodes based on a thermally activated delayed fluorescence emitter. Journal of Materials Chemistry C 2014, 2, 421–424.
  • 23. Endo A., Ogasawara M., Takahashi A., Yokoyama D., Kato Y., Adachi C.: Thermally Activated Delayed Fluorescence from Sn4+ – Porphyrin Complexes and Their Application to Organic Light-Emitting Diodes — A Novel Mechanism for Electroluminescence. Advanced Materials 2009, 21, 4802–4806.
  • 24. Dias F.B., Bourdakos K.N., Jankus V., Moss K.C., Kamtekar K.T., Bhalla V., Santos J., Bryce M.R., Monkman A.P.: Triplet Harvesting with 100% Efficiency by Way of Thermally Activated Delayed Fluorescence in Charge Transfer OLED Emitters. Advanced Materials 2013, 25, 3707–3714.
  • 25. Jankus V., Data P., Graves D., McGuinness C., Santos J., Bryce M.R., Dias F.B., Monkman A.P.: Highly Efficient TADF OLEDs: How the Emitter–Host Interaction Controls Both the Excited State Species and Electrical Properties of the Devices to Achieve Near 100% Triplet Harvesting and High Efficiency. Advanced Functional Materials 2014, 24, 6178–6186.
  • 26. Data P., Motyka R., Lapkowski M., Suwinski J., Jursenas S., Kreiza G., Miasojedovas A., Monkman A.P.: Efficient p-phenylene based OLEDs with mixed interfacial exciplex emission. Electrochimica Acta 2015, 182, 524–528.
  • 27. Data P., Kurowska A., Pluczyk S., Zassowski P., Pander P., Jedrysiak R., Czwartosz M., Otulakowski L., Suwinski J., Lapkowski M., Monkman A.P.: Exciplex Enhancement as a Tool to Increase OLED Device Efficiency. Journal of Physical Chemistry C 2016, 120(4), 2070–2078.
  • 28. Tanaka H., Shizu K., Nakanotani H., Adachi C.: Twisted Intramolecular Charge Transfer State for Long-Wavelength Thermally Activated Delayed Fluorescence. Chemistry of Materials 2013, 25, 3766–3771.
  • 29. Serevicius T., Nakagawa T., Kuo M.-C., Cheng S.-H., Wong K.-T., Chang C.-H., Kwong R.C., Xiae S., Adachi C.: Enhanced electroluminescence based on thermally activated delayed fluorescence from a carbazole–triazine derivative. Physical Chemistry Chemical Physics 2013, 15, 15850–15855.
  • 30. Mayr C., Lee S.Y., Schmidt T.D., Yasuda T., Adachi C., Brütting W.: Efficiency Enhancement of Organic Light-Emitting Diodes Incorporating a Highly Oriented Thermally Activated Delayed Fluorescence Emitter. Advanced Functional Materials 2014, 24, 5232–5239.
  • 31. Tao Y., Yuan K., Chen T., Xu P., Li H., Chen R., Zheng C., Zhang L., Huang W.: Thermally Activated Delayed Fluorescence Materials Towards the Breakthrough of Organoelectronics. Advanced Materials 2014, 26, 7931–7958.
  • 32. Reghu R.R., Grazulevicius J.V., Simokaitiene J., Matulaitis T., Miasojedovas A., Kazlauskas K., Jursenas S., Data P., Lapkowski M., Zassowski P.: Glass forming donor-substituted s-triazines: Photophysical and electrochemical properties. Dyes and Pigments 2013, 97, 412–422.
  • 33. Parker C.A., Hatchard C.G.: Triplet-singlet emission in fluid solutions. Transactions of the Faraday Society 1961, 57, 1894–1904.
  • 34. Li J., Zhang Q., Nomura H., Miyazaki H., Adachi C.: Thermally activated delayed fluorescence from 3n* to 1n* up-conversion and its application to organic light-emitting diodes. Applied Physics Letters 2014, 105, 013301.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9462a546-4ee6-4be1-ad7c-e0a19a41e8c2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.