PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The elliptic curved beam finite element for static and dynamic analysis of arches

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper the physical curved beam finite element of elliptic shape was derived. Unlike for the typically used beam elements the shape functions derived here are not of constant coefficients but rather depend on physical and geometrical parameters of the element. To avoid elliptic integrals in the derivation the basic functions for the ellipse were replaced with their expansions into polynomial series. Thus, the shape functions obtained are quasi-exact solutions of differential equations for the deformed shape of the curved beam. The quasi-exact stiffness matrix was also derived as well as the consistent mass matrix. The derivations were carried out using the symbolic algebra program Maple. The performance of the element featuring no locking was checked in several numerical examples.
Rocznik
Tom
Strony
73--109
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
  • Poznan University of Technology, Institute of Structural Engineering, ul. Piotrowo 5, 60-965 Poznań, Poland
Bibliografia
  • 1. Babu C. R., Prathap G.: A linear thick curved beam element, International Journal for Numerical Methods in Engineering, 23 (1986) 1313-1328.
  • 2. Choi J.-K., Lim J.-K.: General curved beam elements based on the assumed strain fields, Computers and Structures, 55 (1995) 379-386.
  • 3. Guimaraes J. E. F., Heppler G. R.: On trigonometric basis functions for C1 curved beam elements, Computers and Structures, 45 (1992) 405-413.
  • 4. Lee P.-G., Sin H.-C.: Locking-free curved beam element based on curvature, International Journal for Numerical Methods in Engineering, 37 (1984) 989-1007.
  • 5. Lee S.-S., Koo J.-S., Choi J.-M.: Development of a new curved beam element with shear effect, Engineering Computations, 13 (1996) 9-25.
  • 6. Litewka P., Rakowski J.: An efficient curved beam finite element, International Journal for Numerical Methods in Engineering, 40 (1997) 2629-2652.
  • 7. Litewka P., Rakowski J.: The exact thick arch finite element, Computers and Structures, 68 (1998) 369-379.
  • 8. Litewka P., Rakowski J.: Free vibrations of shear-flexible and compressible arches by FEM, International Journal for Numerical Methods in Engineering, 52 3 (2001) 273-286.
  • 9. Litewka P, Sikora S: Elliptic curved beam finite element, IV European Conference on Computational Mechanics ECCM 2010, Palais des Congres, Paris, France, May 16-21, 2010, CD-ROM paper 833.
  • 10. Marquis J. P., Wang T. M: Stiffness matrix of parabolic beam element, Computers and Structures, 31 (1989) 863-870.
  • 11. Noor A. K., Peters J. M.: Mixed models and reduced/selective integration displacement models for nonlinear analysis of curved beams, International Journal for Numerical Methods in Engineering, 17 (1981) 615-632.
  • 12. Pandian N., Appa Rao T. V. S. R., Chandra S.: Studies on performance of curved beam finite elements for analysis of thin arches, Computers and Structures, 31 (1989) 997-1002.
  • 13. Pantazopoulou S. J.: Low-order interpolation functions for curved beams, Journal of Engineering Mechanics (Proceedings of ASCE), 118 (1992) 329-350.
  • 14. Prathap G., Bhashyam G. R.: Reduced integration and the shear-flexible beam element, International Journal for Numerical Methods in Engineering., 18(1982) 195-210.
  • 15. Rakowski J.: The interpretation of the shear-locking in beam elements, Computers and Structures, 37 (1990) 769-776.
  • 16. Sabir A. B., Ashwell D. G.: A comparison of curved beam finite elements when used in vibrations problems, Journal of Sound and Vibration, 18 4 (1971)555-563.
  • 17. Saleeb A. F., Chang T. Y.: On hybrid-mixed formulations of C0 curved beam elements, Computer Methods in Applied Mechanics and Engineering, 60(1987) 95-121.
  • 18. Stolarski H., Belytschko T.: Membrane locking and reduced integration for curved elements, Journal of Applied Mechanics (Transactions of ASME), 49(1982) 172-176.
  • 19. Stolarski H., Belytschko T.: Shear and membrane locking in curved C0 elements, Computer Methods in Applied Mechanics and Engineering, 41 (1983) 279-296.
  • 20. Zienkiewicz O. C., Taylor R. L., Too J. M.: Reduced integration technique in general analysis of plates and shells, International Journal for Numerical Methods in Engineering, 3 (1971) 275-290.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-945b6b46-6747-4670-b623-e92f0ab535b5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.