PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multi-objective design optimization of five-phase fractional-slot concentrated-winding surface-mounted permanent-magnet machine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The multi-phase permanent-magnet machines with a fractional-slot concentratedwinding (FSCW) are a suitable choice for certain purposes like aircraft, marine, and electric vehicles, because of the fault tolerance and high power density capability. The paper aims to design, optimize and prototype a five-phase fractional-slot concentrated-winding surface-mounted permanent-magnet motor. To optimize the designed multi-phase motor a multi-objective optimization technique based on the genetic algorithm method is applied. The machine design objectives are to maximize torque density of the motor and maximize efficiency then to determine the best choice of the designed machine parameters. Then, the two-dimensional Finite Element Method (2D-FEM) is employed to verify the performance of the optimized machine. Finally, the optimized machine is prototyped. The paper found that the results of the prototyped machine validate the results of theatrical analyses of the machine and accurate consideration of the parameters improved the acting of the machine.
Rocznik
Strony
873--889
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wz.
Twórcy
  • Department of Electrical Engineering, Islamic Azad University Khomeinishahr Branch Khomeinishahr/Isfahan, Iran
  • Department of Electrical Engineering, Islamic Azad University Khomeinishahr Branch Khomeinishahr/Isfahan, Iran
  • Department of Electrical Engineering, Islamic Azad University Khomeinishahr Branch Khomeinishahr/Isfahan, Iran
Bibliografia
  • [1] Gang L., Bo R., Zi Q., Design guidelines for fractional slot multi-phase modular permanent magnet machines, IET Electric Power Application, vol. 11, no. 6, pp. 1023–1031 (2017).
  • [2] Listwan J., Analysis of fault states in drive systems with multi-phase induction motors, Archives of Electrical Engineering, vol. 68, no. 4, pp. 817–830 (2019).
  • [3] EL-Refaie A.M., Fractional-Slot Concentrated-Windings Synchronous Permanent Magnet Machines: Opportunities and Challenges, IEEE Transactions on Industrial Electronics, vol. 57, no. 1, pp. 107–121 (2010).
  • [4] Caramia R., Piotuch P., Pałka R., Multi-objective FEM based optimization of BLDC motor using Matlab and Maxwell scripting capabilities, Archives of Electrical Engineering, vol. 63, no. 1, pp. 115–124 (2014).
  • [5] Sarikhani A., Mohammed O., Multiobjective design optimization of coupled PM synchronous motordrive using physics-based modeling approach, IEEE Transactions on Magnetics, vol. 47, no. 5, pp. 1266–1269 (2011).
  • [6] Cros J., Viarouge P., Synthesis of high performance PM motors with concentrated windings, IEEE Transactions on Energy Conversion, vol. 17, no. 2, pp. 248–253 (2002).
  • [7] Zhu Z., Howe D., Instantaneous magnetic field distribution in brushless permanent magnet motors, part III: Effect of stator slotting, IEEE Transactions on Magnetics, vol. 29, no. 1, pp. 143–151 (1993).
  • [8] Proca A., Keyhani A., El-Antably A., Lu W., Dai M., Analytical model for permanent magnet motors with surface mounted magnets, IEEE Transactions on Energy Conversion, vol. 18, no. 3, pp. 386–391 (2003).
  • [9] Refaie A.M., Jahns T.M., Novotny D.W., Analysis of surface permanent magnet machines with fractional slot concentrated windings, IEEE Transactions on Energy Conversion, vol. 21, no. 1, pp. 34–43 (2006).
  • [10] EL-Refaie A.M., Jahns M., Optimal flux weakening in surface PM machines using fractional slot concentrated windings, IEEE Transactions on Industry Applications, vol. 41, no. 3, pp. 790–800 (2005).
  • [11] Chen J., Zhu Z., Winding configurations and optimal stator and rotor pole combination of flux-switching PM brushless AC machines, IEEE Transactions on Energy Conversion, vol. 25, no. 2, pp. 293–302 (2010).
  • [12] Yong K., Hong C., Chang K., Pan S., A back EMF optimization of double layered large-scale BLDC motor by using hybrid optimization method, IEEE Transactions on Magnetics, vol. 47, no. 5, pp. 998–1001 (2011).
  • [13] Sadeghi S., Parsa L., Multiobjective Design Optimization of Five-Phase Halbach Array PermanentMagnet Machine, IEEE Transactions on Magnetics, vol. 47, no. 6, pp. 828–837 (2011).
  • [14] Islam S., Islam R., Sebastian T., Experimental Verification of Design Techniques of Permanent-Magnet Synchronous Motors for Low-Torque-Ripple Applications, IEEE Transactions on Industry Applications, vol. 47, no. 1, pp. 28–37 (2011).
  • [15] Li Y., Xing J., Wang T., Lu Y., Programmable Design of Magnet Shape for Permanent Magnet Synchronous Motors With Sinusoidal Back EMF Waveforms, IEEE Transactions on Magnetics, vol. 44, no. 9, pp. 18–25 (2008).
  • [16] Parasiliti F., Villani M., Lucidi S., Finite-Element-Based Multiobjective Design Optimization Procedure of Interior Permanent Magnet Synchronous Motors for Wide Constant-Power Region Operation, IEEE Transactions on Magnetics, vol. 6, no. 10, pp. 211–219 (2012).
  • [17] Lim D., Kyung Y., Sang J., Optimal Design of an Interior Permanent Magnet Synchronous Motor by Using a New Surrogate-Assisted Multi-Objective Optimization, IEEE Transactions on Magnetics, vol. 51, no. 11, pp. 11–19 (2015).
  • [18] Parsa L., Toliyat A., Five-Phase Interior Permanent-Magnet Motors With Low Torque Pulsation, IEEE Transactions on Industry Applications, vol. 43, no. 1, pp. 128–137 (2007).
  • [19] Cassimere B., Sudhoff D., Population based design of surfacemounted permanent magnet synchronous machines, IEEE Transactions on Energy Conversion, vol. 24, no. 2, pp. 41–48 (2009).
  • [20] Deb K., Multi-Objective Optimization Using Evolutionary Algorithms, Wiley (2001).
  • [21] Kim J., Cho D., Jung H., Lee C., Niching genetic algorithm adopting restricted ompetition selection combined with pattern search method, IEEE Transactions on Magnetics, vol. 38, no. 2, pp. 1001–1004 (2002).
  • [22] Fatima M., Seifeddine B., Analysis, simulation and experimental strategies of 5-phase permanent magnet motor control, Archives of Electrical Engineering, vol. 68, no. 3, pp. 629–641 (2019).
  • [23] Zheng P., Sui Y., Zhenxing F., Investigation of a Five-Phase 20-Slot/18-Pole PMSM for Electric Vehicles, 17th International Conference on Electrical Machines and Systems, Hangzhou, China, pp. 22–25 (2014).
  • [24] Sudhoff D., Cale J., Cassimere N., Swinney D., Genetic algorithm design of a permanent magnet synchronous machine, in Proc. IEEE International Conference Electrical Machines and Drives, New York, US, pp. 1011–1019 (2005).
  • [25] Sudhoff D., Lee Y., Energy Systems Analysis Consortium (ESAC) Genetic Optimization System Engineering Tool (GOSET) Version 1.05 Manual, School of Electrical and Computer Engineering, Purdue Univ., West Lafayette (2003).
  • [26] Hendershot M., Miller J., Design of Brushless Permanent Magnet Motors, Monographs in Electrical and Electronic Engineering, Oxford University Press (1995).
  • [27] Di Barba P., Mognaschi M., Venini P., Wiak S., Biogeography-inspired multi-objective optimization for helping MEMS synthesis, Archives of Electrical Engineering, vol. 66, no. 3, pp. 607–62 (2017).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-945b0575-5abf-4625-bdeb-d6f7eabc302f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.