PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance optimization of organic Rankine cycles for waste heat recovery for a large diesel engine

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to recover the low grade waste heat and increase system fuel economy for main engine 10S90ME-C9.2-TII(part load, exhaust gas bypass) installed on a 10000 TEU container ship, a non-cogeneration and single-pressure type of waste heat recovery system based on organic Rankine cycle is proposed. Organic compound candidates appropriate to the system are analyzed and selected. Thermodynamic model of the whole system and thermoeconomic optimization are performed. The saturated organic compound vapor mass flow rate, net electric power output, pinch point, thermal efficiency and exergy efficiency varied with different evaporating temperature are thermodynamically analyzed. The results of thermodynamic and thermoeconomic optimization indicate that the most appropriate organic compound candidate is R141b due to its highest exergy efficiency, biggest unit cost benefit and shortest payback time.
Rocznik
Strony
3--23
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
  • College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
autor
  • College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
autor
  • College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
Bibliografia
  • [1] Ma Z., Yang D., Guo Q.: Conceptual design and performance analysis of an exhaust gas waste heat recovery system for a 10000 TEU container ship. Polish Maritime Res. 19(2012),2, 31–38.
  • [2] MAN B&W Diesel A/S.: Thermo Efficiency System for Reduction of Fuel Consumption and CO2 Emission. Copenhagen, 2007.
  • [3] Ma Z., Yang D.: Conceptual design and performance analysis of waste heat recovery system for intelligent marine diesel engines. Part 2: Integrating power. Int. J. Heat Tech. 30(2012), 1, 119–125.
  • [4] Dai Y., Wang J., Gao L.: Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery. Energ. Convers. Manage. 50(2009), 576–582.
  • [5] Durmusouglu Y. , Satir T., Deniz C., Kilic A.: A novel energy saving and power production system performance analysis in marine power plant using waste heat. In: Proc. Int. Conf. Marine Learning and Applications, 2009, 751–754.
  • [6] Yue G., Dong S, Zheng Q., Li J.: Design of diesel engine waste heat recovery system with organic Rankine cycle. Appl. Mech. Materials 148-149(2012), 1264– 1270.
  • [7] Dong Yang, Zheshu Ma: Conceptual design and performance analysis of waste heat recovery system for intelligent marine diesel engines. Part 1: Impractical analysis of traditional WHR systems. Int. J. Heat and Tech. 30(2012), 2, 85–91.
  • [8] MAN B&W Diesel A/S.: Soot Deposits and Fires in Exhaust Gas Boilers. Copenhagen, 2004.
  • [9] Mago P.J., Chamra L.M., Srinivasan K., Somayaji C.: An examination of regenerative organic Rankine cycles using dry fluids. Appl. Thermal Eng. 28(2008), 998–1007.
  • [10] Badr O., Ocallaghan P.W., Probert S.D.: Rankine-Cycle systems for harnessing power from low-grade energy-sources. Appl. Energ. 36(1990), 263–292.
  • [11] Gu W., Weng Y., Wang Y., Zheng B.: Theoretical and experimental investigation of an prganic Rankine cycle for a waste heat recovery system. J. Power Energ. 223(2009), 523–533.
  • [12] Drescher U., Bruggemann D.: Fluid selection for the Organic Rankine Cycle (ORC) in biomass power and heat plants. Appl. Thermal Eng. 27(2007), 223–228.
  • [13] Aljundi I.H.: Effect of dry hydrocarbons and critical point temperature on the efficiencies of organic Rankine cycle. Renew. Energ. 36(2011), 1196-1202.
  • [14] Quoilin S., Declaye S., Tchanche B.F., Lemort V.: Thermo-economic optimization of waste heat recovery organic Rankine cycles. Appl. Thermal Eng. 31(2011), 2885–2893.
  • [15] Nag P.K., De S.: Design and operation of a heat recovery system generator with minimum irreversibility. Appl. Thermal Eng. 17(1997), 385–391.
  • [16] Zhao Q., Zhou Q., Tan H., Hui S.: Research and Design of Waste Heat Boiler. China Standard Press, ISBN 9787506657242, 2010.
  • [17] Dittus F.W., Boelter L.M.K.: Publications in Engineering. CA, USA: University of California, Berkeley 1930.
  • [18] Shah M.M.: Chart correlation for saturated boiling heat transfer: equation and further study. Ashre Trans 88(1982), 1, 185–196.
  • [19] Wei Hua, Ying Lang: Heat Exchanger Design Manual. Petroleum Industry Press, ISBN 9787802431997, 1987.
  • [20] REFPROP Version 8.0, NIST Standard Reference Database 23, the US Secretary of Commerce, 2007.
  • [21] Casarosa C., Franco A.: Thermodynamic optimization of the operative parameters for the heat recovery in combined plants. Int. J. Appl. Thermodyn. 4(2001), 1, 43–52.
  • [22] Naugheten B.: Economic assessment of combined cycle gas turbines in Australia, some effects of microeconomic reform and technological change. Energ. Policy 31(2003), 3, 225–245.
  • [23] Lee K.M., Kuo S.F., Chen M.L., Shih Y.S.: Parameters analysis on organic Rankine cycle energy recovery system. Energ. Convers. Manage. 28(1988), 2, 129–136.
  • [24] http://app.finance.ifeng.com/data/indu/cpjg.php?symbol=1027&kind=%E5%B9%B3%E5%9D%87%E4%BB%B7%E6%A0%BC.
  • [25] Wajs J., Mikielewicz D., Bajor M., Knaba Z.: Experimental investigation of domestic micro-CHP based on the gas boiler fitted with ORC module. Arch. Thermodyn.37(2016), 3, 79–93 (DOI: 10.1515/aoter-2016-0021).
  • [26] Mocarski S., Borsukiewicz-Gozdur A.: Selected aspects of operation of supercritical (transcritical) organic Rankine cycle. Arch. Thermodyn. 36(2015), 2, 85–103 (DOI: 10.1515/aoter-2015-0017).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9454954a-4758-456a-8616-8ee109994cc8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.