Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Porous metals show not only extremely low density, but also excellent physical, mechanical and acoustic properties. In this study, Hastelloy powders prepared by gas atomization are used to manufacture 3D geometries of Hastelloy porous metal with above 90% porosity using electrostatic powder coating process. In order to control pore size and porosity, foam is sintered at 1200~1300°C and different powder coating amount. The pore properties are evaluated using SEM and Archimedes method. As powder coating amount and sintering temperature increased, porosity is decreased from 96.4 to 94.4%. And foam density is increased from 0.323 to 0.497 g/cm3 and pore size is decreased from 98 to 560 μm. When the sintering temperature is increased, foam thickness and strut thickness are decreased from 9.85 to 8.13 mm and from 366 to 292 μm.
Wydawca
Czasopismo
Rocznik
Tom
Strony
547--550
Opis fizyczny
Bibliogr. 19 poz., fot., rys., tab.
Twórcy
autor
- Korea Institute of Materials Science (KIMS), Metal Powder Department, Changwon 51508, Korea
- University of Ulsan, Department of Materials Science and Engineering, Ulsan, Korea
autor
- Korea Institute of Materials Science (KIMS), Metal Powder Department, Changwon 51508, Korea
- University of Ulsan, Department of Materials Science and Engineering, Ulsan, Korea
autor
- Korea Institute of Materials Science (KIMS), Metal Powder Department, Changwon 51508, Korea
autor
- R&D Center, Asflow Co. Ltd. Suwon, Korea
autor
- University of Ulsan, Department of Materials Science and Engineering, Ulsan, Korea
autor
- Korea Institute of Materials Science (KIMS), Metal Powder Department, Changwon 51508, Korea
Bibliografia
- [1] G. Ryan, A. Pandit, DP Apatsidis, Biomaterials 27, 2652 (2006).
- [2] J. Ba nhart, Mater. Sci. 46, 559 (2001).
- [3] J. T. Wood, Production and applications of Continusly Cast Foamed Aluminium, in: Fraunhofer USA Metal Foam Symposium, Stanton, Delaware (1997).
- [4] M. Thomas, Particle-stabilized metal foam and its production. US Patent No. 5,622,542.
- [5] S. Akiyama, Foamed metal and method of producing same, US Patent No. 4,713,277.
- [6] T. Miyoshi, M. Itoh, S. Akiyama, A. Kitahara, Adv. Eng. Mater. 2, 179 (2000).
- [7] T. Miyoshi, M. Itoh, S. Akiyama, A. Kitahara, MRS Proceedings, 521, 133 (1998).
- [8] http://ergaerospace.com, aceessed: [03.01.2019].
- [9] B. Matijasevic-Lux, J. Banhart, S. Fiechter, O. Gorke, N. Wanderka, Acta Mater. 54, 1887 (2006).
- [10] D. M. Elzey, H.N.G. Wadley, MRS Proceedings, 521 (1998).
- [11] D. S. Schwartz, D. S. Shih, MRS Proceedings. 521 (1998).
- [12] C. Uslu, K. J. Lee, T. H. Sanders, J. K. Cochran, Ti-6Al-4V hollow sphere foams, Synthesis/Processing of Light Weight Metallic Materials II, TMS, Warrendale, PA, USA 1997.
- [13] O. Anderson, U. Waag, L. Schneider, G. Stephani, B. Kiebak, Adv Eng Mater. 2, 192, (2000).
- [14] T. Shimizu, K. Matsuzaki, K. Kikuchi, N. kanetake, J. Jpn. Soc. Powder and Powder Metallurgy 55, 770-775, (2008).
- [15] J. Choi, J. H. Kim, Kor. Powd. Met. Inst. 17, 486 (2010).
- [16] G. J. Davies, S. Zhen, Mater. Sci. 18, 1899 (1983).
- [17] B.A.A.L. Van Setten, M. Makkee, J. A. Moulijn, Catal. Rev. Sci. Eng. 43, 489 (2001).
- [18] http://www.hightempmetals.com/techdata/hitempHastC-276data, aceessed: [03.01.2019].
- [19] W. A. Whittenberger, Stackable Structural Reactor, Catacel, US Patent No. 7,906,079.
Uwagi
EN
1. This study was supported financially by Fundamental Research Program of the Korean Institute of Materials Science (KIMS) and by a grant from the Fundamental R&D Program for Strategic Core Technology of Materials funded by the Ministry of Trade, Industry & Energy, Republic of Korea.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9452c644-1e43-4250-a51a-350242cd6256