PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction-based Active Queue Management in the Internet

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Aktywne zarządzanie kolejką w Internecie bazujące na przewidywaniu
Języki publikacji
EN
Abstrakty
EN
Random early detection (RED) is the most popular active queue management algorithm that is used by the Internet routers. This paper proposes a neuro-fuzzy controller which enhances the network performance by dynamically tuning of RED's maxp parameter. The controller first learns the network behavior against maxp variations and then adjusts maxp. Simulation results in ns-2 environment show that, the proposed learning RED, called LRED, keeps queue length and queuing delay in a pre-determined level and outperforms RED in terms of queue length and stability.
PL
W artykule zaprezentowano sterownik neuro-fuzzy który poprawia dynamiczne strojenie system RED stosowanego do kolejkowania w Internecie. Proponowany uczący się algorytm nazwany LRED pozwala na utrzymanie długości kolejki i opóźnienia w założonych granicach.
Słowa kluczowe
Rocznik
Strony
296--299
Opis fizyczny
Bibliogr. 12 poz., schem., wykr.
Twórcy
autor
  • University of Mohaghegh Ardabili
autor
  • Payame Noor University
  • Islamic Azad University
Bibliografia
  • [1] Arani E., Lucas C., Araabi B. N., “WLoLiMoT: A Wavelete and LoLiMoT Based Algorithm for Time Series Prediction”, Integrated Systems, Design and Technology, 2010.
  • [2] Cisco Systems, Congestion Avoidance Overview, Available from: http://www.cisco.com/univercd/cc/td/doc/product/software/ios12 0/12cgcr/qos_c/qcpart3.
  • [3] Floyd, V. Jacobson, “Random early detection gateways for congestion avoidance”, IEEE/ACM Transactions Networking, 1993.
  • [4] Gholipour A., Araabi B. N., Lucas C., “Predicting Chaotic Time Series Using Neural and Neurofuzzy Models: A Comparative Study”, neural processing letters, volume 24, number 3, 2009.
  • [5] Gholipour A., Lucas C., Araabi B. N., Mirmomeni M., and Shafiee M., “Extracting the main patterns of natural time series for longterm neuro fuzzy prediction,” Neural Computing and Applications, 2006.
  • [6] May M., Bolot J., Diot C., Lyles B., “Reasons Not to Deploy RED”, 7th. International Workshop on Quality of Service, 1999.
  • [7] Mirmomeni M., Lucas C., Moshiri B., Araabi B. N., “Introducing adaptive neurofuzzy modeling with online learning method for prediction of time-varying solar and geomagnetic activity indices”, Expert systems with applications, Volume 37, Issue 12, 2010.
  • [8] Misra V., Gong W. Bo, Towsley D. F., “Fluid-based Analysis of a Network of AQM Routers Supporting TCP Flows with an Application to RED”, SIGCOMM, 2000.
  • [9] Nelles O., Nonlinear system identification, Springer Verlag press, 2001.
  • [10] Network Simulator-ns2, http://-mash.cs.berkelay.edu/ns.
  • [11] Ott T., Lakshman T., Wong L., SRED: Stabilized RED, Infocom, 1999.
  • [12] Pedram A., Jamali M. R., Pedram T., Fakhraie S. M., Lucas C., “Local Linear Model Tree (LOLIMOT) Reconfigurable Parallel Hardware”, World Academy of Science, Engineering and Technology, 2006.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9450b131-ecb5-4ed5-8946-0afea9ed589d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.